VIPERLAB: EU project aims to boost perovskite solar industry in Europe

</p> <p>VIPERLAB is funded under the European Programme for Research and Innovation Horizon 2020 (Grant No 101006715).</p> <p>

VIPERLAB is funded under the European Programme for Research and Innovation Horizon 2020 (Grant No 101006715).

HZB runs state-of-the-art laboratories (here HySPRINT) to advance research on perovskite solar cells.

HZB runs state-of-the-art laboratories (here HySPRINT) to advance research on perovskite solar cells. © P. Dera / HZB

Also the EMIL lab at HZB will host VIPERLAB projects.

Also the EMIL lab at HZB will host VIPERLAB projects. © S. Grunze/HZB

The HZB is coordinating a major European collaborative project to open up new opportunities for the European solar industry. The VIPERLAB project involves 15 renowned research institutions from Europe, as well as Switzerland and Great Britain. It will be funded within the framework of the EU's Horizon 2020 programme for the next three and a half years with a total of 5.5 million euros, from which the HZB will receive just under 840,000 euros. 

Perovskite semiconductors enable extremely cheap and powerful solar cells. Many research results on this class of materials are obtained in European laboratories. For example, working groups at Helmholtz-Zentrum Berlin (HZB) have already achieved several world records with perovskite solar cells. Now the HZB is coordinating a major European collaborative project to open up new opportunities for the European solar industry.

VIPERLAB stands for „Fully connected virtual and physical perovskite photovoltaics Lab“. With VIPERLAB, the participating research institutions want to accelerate the development of perovskite PV technology in Europe and promote technology transfer to industry. To this end, they want to establish a close dialogue with the emerging perovskite industry in Europe, both with the help of new initiatives and with more established players such as the European solar industry association Solar Power Europe.

The participating institutions are among the best in European perovskite research. Within VIPERLAB, they will facilitate access to their laboratories and infrastructures so that research teams from public institutions or industry can work with the optimal equipment and methods. A database on materials and building elements will also be established, incorporating information on long-term performance and environmental and economic impacts. This database will enable evidence-based commercial and policy decisions.

Through close collaboration and tailor-made research services, VIPERLAB aims to give European industry a knowledge edge along the entire value chain.

VIPERLAB is funded under the European Programme for Research and Innovation Horizon 2020 (No 101006715).

arö

  • Copy link

You might also be interested in

  • Battery research: visualisation of aging processes operando
    Science Highlight
    29.04.2025
    Battery research: visualisation of aging processes operando
    Lithium button cells with electrodes made of nickel-manganese-cobalt oxides (NMC) are very powerful. Unfortunately, their capacity decreases over time. Now, for the first time, a team has used a non-destructive method to observe how the elemental composition of the individual layers in a button cell changes during charging cycles. The study, now published in the journal Small, involved teams from the Physikalisch-Technische Bundesanstalt (PTB), the University of Münster, researchers from the SyncLab research group at HZB and the BLiX laboratory at the Technical University of Berlin. Measurements were carried out in the BLiX laboratory and at the BESSY II synchrotron radiation source.
  • New instrument at BESSY II: The OÆSE endstation in EMIL
    Science Highlight
    23.04.2025
    New instrument at BESSY II: The OÆSE endstation in EMIL
    A new instrument is now available at BESSY II for investigating catalyst materials, battery electrodes and other energy devices under operating conditions: the Operando Absorption and Emission Spectroscopy on EMIL (OÆSE) endstation in the Energy Materials In-situ Laboratory Berlin (EMIL). A team led by Raul Garcia-Diez and Marcus Bär showcases the instrument’s capabilities via a proof-of-concept study on electrodeposited copper.
  • Green hydrogen: A cage structured material transforms into a performant catalyst
    Science Highlight
    17.04.2025
    Green hydrogen: A cage structured material transforms into a performant catalyst
    Clathrates are characterised by a complex cage structure that provides space for guest ions too. Now, for the first time, a team has investigated the suitability of clathrates as catalysts for electrolytic hydrogen production with impressive results: the clathrate sample was even more efficient and robust than currently used nickel-based catalysts. They also found a reason for this enhanced performance. Measurements at BESSY II showed that the clathrates undergo structural changes during the catalytic reaction: the three-dimensional cage structure decays into ultra-thin nanosheets that allow maximum contact with active catalytic centres. The study has been published in the journal ‘Angewandte Chemie’.