VIPERLAB: EU-Projekt soll Perowskit-Solarindustrie in Europa beflügeln

</p> <p>VIPERLAB wird im Rahmen des Europ&auml;ischen Programms f&uuml;r Forschung und Innovation Horizont 2020 gef&ouml;rdert (Grant No 101006715).</p> <p>

VIPERLAB wird im Rahmen des Europäischen Programms für Forschung und Innovation Horizont 2020 gefördert (Grant No 101006715).

Das HZB besitzt modernste Laboratorien (hier HySPRINT), um die Forschung an Perowskit-Solarzellen voranzutreiben.

Das HZB besitzt modernste Laboratorien (hier HySPRINT), um die Forschung an Perowskit-Solarzellen voranzutreiben. © P. Dera / HZB

Auch im EMIL-Labor am HZB werden Arbeiten im Rahmen von VIPERLAB stattfinden.

Auch im EMIL-Labor am HZB werden Arbeiten im Rahmen von VIPERLAB stattfinden. © S. Grunze/HZB

Perowskit-Halbleiter ermöglichen extrem günstige und leistungsstarke Solarzellen. Viele Forschungsergebnisse zu dieser Materialklasse werden in europäischen Laboren gewonnen. So haben Arbeitsgruppen am Helmholtz-Zentrum Berlin (HZB) bereits mehrere Weltrekorde mit Perowskit-Solarzellen erzielt. Nun kooordiniert das HZB das große Verbundprojekt VIPERLAB, um neue Chancen für die europäische Solarindustrie zu erschließen. An dem Projekt VIPERLAB beteiligen sich 15 renommierte Forschungseinrichtungen aus Europa, der Schweiz und Großbritannien. Es wird im Rahmen des EU-Programms Horizont 2020 in den kommenden dreieinhalb Jahren mit insgesamt 5,5 Millionen Euro gefördert, das HZB erhält daraus knapp 840.000 Euro. 

VIPERLAB steht für „Fully connected virtual and physical perovskite photovoltaics Lab“. Mit VIPERLAB* wollen die beteiligten Forschungseinrichtungen die Entwicklung der Perowskit-PV-Technologie in Europa beschleunigen und den Technologietransfer in die Industrie vorantreiben. Dafür wollen sie einen engen Dialog mit der aufstrebenden Perowskit-Industrie in Europa aufbauen, sowohl mit Hilfe neuer Initiativen als auch mit etablierteren Akteuren wie dem europäischen Solarindustrieverband Solar Power Europe.

Die 15 beteiligten Einrichtungen zählen zu den besten Adressen der europäischen Perowskit-Forschung. Sie werden im Rahmen von VIPERLAB den Zugang zu ihren Laboren und Infrastrukturen erleichtern, so dass Forschungsteams aus öffentlichen Einrichtungen oder der Industrie mit den optimalen Geräten und Methoden arbeiten können. Außerdem soll eine Datenbank zu Materialien und Bauelementen aufgebaut werden, in die auch Informationen zur langfristigen Leistung und zu den ökologischen und wirtschaftlichen Auswirkungen einfließen. Diese Datenbank soll evidenzbasierte kommerzielle und politische Entscheidungen ermöglichen.

Durch enge Zusammenarbeit und maßgeschneiderte Dienstleistungen aus der Forschung zielt VIPERLAB darauf ab, der Europäischen Industrie entlang der gesamten Wertschöpfungskette einen Wissensvorsprung zu sichern.

VIPERLAB wird im Rahmen des Europäischen Programms für Forschung und Innovation Horizont 2020 gefördert (No 101006715).

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Nanoinseln auf Silizium mit schaltbaren topologischen Texturen
    Science Highlight
    20.01.2025
    Nanoinseln auf Silizium mit schaltbaren topologischen Texturen
    Nanostrukturen mit spezifischen elektromagnetischen Texturen versprechen Anwendungsmöglichkeiten für die Nanoelektronik und zukünftige Informationstechnologien. Es ist jedoch sehr schwierig, solche Texturen zu kontrollieren. Nun hat ein Team am HZB eine bestimmte Klasse von Nanoinseln auf Silizium mit chiralen, wirbelnden polaren Texturen untersucht, die durch ein externes elektrisches Feld stabilisiert und sogar reversibel umgeschaltet werden können.
  • Lithium-Schwefel-Batterien im Taschenformat an BESSY II durchleuchtet
    Science Highlight
    08.01.2025
    Lithium-Schwefel-Batterien im Taschenformat an BESSY II durchleuchtet
    Neue Einblicke in Lithium-Schwefel-Pouchzellen hat ein Team aus HZB und dem Fraunhofer-Institut für Werkstoff- und Strahltechnik (IWS) in Dresden an der BAMline von BESSY II gewonnen. Ergänzt durch Analysen im Imaging Labor des HZB sowie weiteren Messungen ergibt sich ein neues und aufschlussreiches Bild von Prozessen, die Leistung und Lebensdauer dieses industrierelevanten Batterietyps begrenzen. Die Studie ist im renommierten Fachjournal "Advanced Energy Materials" publiziert.

  • Größte bisher bekannte magnetische Anisotropie eines Moleküls gemessen
    Science Highlight
    21.12.2024
    Größte bisher bekannte magnetische Anisotropie eines Moleküls gemessen
    An der Berliner Synchrotronstrahlungsquelle BESSY II ist es gelungen, die größte magnetische Anisotropie eines einzelnen Moleküls zu bestimmen, die jemals experimentell gemessen wurde. Je größer diese Anisotropie ist, desto besser eignet sich ein Molekül als molekularer Nanomagnet. Solche Nanomagnete besitzen eine Vielzahl von potenziellen Anwendungen, z. B. als energieeffiziente Datenspeicher. An der Studie waren Forschende aus dem Max-Planck-Institut für Kohlenforschung (MPI KOFO), dem Joint Lab EPR4Energy des Max-Planck-Instituts für Chemische Energiekonversion (MPI CEC) und dem Helmholtz-Zentrums Berlin beteiligt.