VIPERLAB: EU project aims to boost perovskite solar industry in Europe

</p> <p>VIPERLAB is funded under the European Programme for Research and Innovation Horizon 2020 (Grant No 101006715).</p> <p>

VIPERLAB is funded under the European Programme for Research and Innovation Horizon 2020 (Grant No 101006715).

HZB runs state-of-the-art laboratories (here HySPRINT) to advance research on perovskite solar cells.

HZB runs state-of-the-art laboratories (here HySPRINT) to advance research on perovskite solar cells. © P. Dera / HZB

Also the EMIL lab at HZB will host VIPERLAB projects.

Also the EMIL lab at HZB will host VIPERLAB projects. © S. Grunze/HZB

The HZB is coordinating a major European collaborative project to open up new opportunities for the European solar industry. The VIPERLAB project involves 15 renowned research institutions from Europe, as well as Switzerland and Great Britain. It will be funded within the framework of the EU's Horizon 2020 programme for the next three and a half years with a total of 5.5 million euros, from which the HZB will receive just under 840,000 euros. 

Perovskite semiconductors enable extremely cheap and powerful solar cells. Many research results on this class of materials are obtained in European laboratories. For example, working groups at Helmholtz-Zentrum Berlin (HZB) have already achieved several world records with perovskite solar cells. Now the HZB is coordinating a major European collaborative project to open up new opportunities for the European solar industry.

VIPERLAB stands for „Fully connected virtual and physical perovskite photovoltaics Lab“. With VIPERLAB, the participating research institutions want to accelerate the development of perovskite PV technology in Europe and promote technology transfer to industry. To this end, they want to establish a close dialogue with the emerging perovskite industry in Europe, both with the help of new initiatives and with more established players such as the European solar industry association Solar Power Europe.

The participating institutions are among the best in European perovskite research. Within VIPERLAB, they will facilitate access to their laboratories and infrastructures so that research teams from public institutions or industry can work with the optimal equipment and methods. A database on materials and building elements will also be established, incorporating information on long-term performance and environmental and economic impacts. This database will enable evidence-based commercial and policy decisions.

Through close collaboration and tailor-made research services, VIPERLAB aims to give European industry a knowledge edge along the entire value chain.

VIPERLAB is funded under the European Programme for Research and Innovation Horizon 2020 (No 101006715).

arö

You might also be interested in

  • Perowskit/Silizium-Tandemsolarzellen auf dem Weg vom Labor in die Produktion
    Science Highlight
    28.06.2022
    Perowskit/Silizium-Tandemsolarzellen auf dem Weg vom Labor in die Produktion
    KOALA/KOALA+ - Die am Helmholtz Zentrum Berlin (HZB) errichtete Clusteranlage ermöglicht Wafer mit Perowskit/Silizium-Tandemsolarzellen im Vakuum herzustellen; ausreichend groß, um eine industrielle Produktion abzubilden. Diese weltweit einzigartige Anlage trägt dazu bei, neue industrienahe Prozesse, Materialien und Solarzellen zu entwickeln.
  • Long night of Sciences at HZB: Experience science up close!
    News
    28.06.2022
    Long night of Sciences at HZB: Experience science up close!
    Important info: At the HZB, FFP2 masks are mandatory indoors from the age of 14 during this event.

    How can solar cells be produced even more efficiently? Why is "green" hydrogen so important for our future? Why does Berlin need an accelerator to screen materials? The answers are available at the Long Night of the Sciences. On July 2, 2022, 5 p.m. to midnight, HZB opens its doors at the Adlershof site and invites young and old to experiment.

  • Atomic displacements in High-Entropy Alloys examined
    Science Highlight
    27.06.2022
    Atomic displacements in High-Entropy Alloys examined
    High-entropy alloys of 3d metals have intriguing properties that are interesting for applications in the energy sector. An international team at BESSY II has now investigated the local order on an atomic scale in a so-called high-entropy Cantor alloy of chromium, manganese, iron, cobalt and nickel. The results from combined spectroscopic studies and statistical simulations expand the understanding of this group of materials.