VIPERLAB: EU project aims to boost perovskite solar industry in Europe

</p> <p>VIPERLAB is funded under the European Programme for Research and Innovation Horizon 2020 (Grant No 101006715).</p> <p>

VIPERLAB is funded under the European Programme for Research and Innovation Horizon 2020 (Grant No 101006715).

HZB runs state-of-the-art laboratories (here HySPRINT) to advance research on perovskite solar cells.

HZB runs state-of-the-art laboratories (here HySPRINT) to advance research on perovskite solar cells. © P. Dera / HZB

Also the EMIL lab at HZB will host VIPERLAB projects.

Also the EMIL lab at HZB will host VIPERLAB projects. © S. Grunze/HZB

The HZB is coordinating a major European collaborative project to open up new opportunities for the European solar industry. The VIPERLAB project involves 15 renowned research institutions from Europe, as well as Switzerland and Great Britain. It will be funded within the framework of the EU's Horizon 2020 programme for the next three and a half years with a total of 5.5 million euros, from which the HZB will receive just under 840,000 euros. 

Perovskite semiconductors enable extremely cheap and powerful solar cells. Many research results on this class of materials are obtained in European laboratories. For example, working groups at Helmholtz-Zentrum Berlin (HZB) have already achieved several world records with perovskite solar cells. Now the HZB is coordinating a major European collaborative project to open up new opportunities for the European solar industry.

VIPERLAB stands for „Fully connected virtual and physical perovskite photovoltaics Lab“. With VIPERLAB, the participating research institutions want to accelerate the development of perovskite PV technology in Europe and promote technology transfer to industry. To this end, they want to establish a close dialogue with the emerging perovskite industry in Europe, both with the help of new initiatives and with more established players such as the European solar industry association Solar Power Europe.

The participating institutions are among the best in European perovskite research. Within VIPERLAB, they will facilitate access to their laboratories and infrastructures so that research teams from public institutions or industry can work with the optimal equipment and methods. A database on materials and building elements will also be established, incorporating information on long-term performance and environmental and economic impacts. This database will enable evidence-based commercial and policy decisions.

Through close collaboration and tailor-made research services, VIPERLAB aims to give European industry a knowledge edge along the entire value chain.

VIPERLAB is funded under the European Programme for Research and Innovation Horizon 2020 (No 101006715).

arö

  • Copy link

You might also be interested in

  • Successful master's degree in IR thermography on solar facades
    News
    22.10.2025
    Successful master's degree in IR thermography on solar facades
    We are delighted to congratulate our student employee Luca Raschke on successfully completing her Master's degree in Renewable Energies at the Hochschule für Technik und Wirtschaft Berlin - and with distinction!
  • BESSY II: Phosphorus chains – a 1D material with 1D electronic properties
    Science Highlight
    21.10.2025
    BESSY II: Phosphorus chains – a 1D material with 1D electronic properties
    For the first time, a team at BESSY II has succeeded in demonstrating the one-dimensional electronic properties in phosphorus. The samples consisted of short chains of phosphorus atoms that self-organise at specific angles on a silver substrate. Through sophisticated analysis, the team was able to disentangle the contributions of these differently aligned chains. This revealed that the electronic properties of each chain are indeed one-dimensional. Calculations predict an exciting phase transition to be expected as soon as these chains are more closely packed. While material consisting of individual chains with longer distances is semiconducting, a very dense chain structure would be metallic.
  • Did marine life in the palaeocene use a compass?
    Science Highlight
    20.10.2025
    Did marine life in the palaeocene use a compass?
    Some ancient marine organisms produced mysterious magnetic particles of unusually large size, which can now be found as fossils in marine sediments. An international team has succeeded in mapping the magnetic domains on one of such ‘giant magnetofossils’ using a sophisticated method at the Diamond X-ray source. Their analysis shows that these particles could have allowed these organisms to sense tiny variations in both the direction and intensity of the Earth’s magnetic field, enabling them to geolocate themselves and navigate across the ocean. The method offers a powerful tool for magnetically testing whether putative biological iron oxide particles in Mars samples have a biogenic origin.