Überblicksbeitrag: Methoden der Röntgenstreuung mit Synchrotronstrahlung

Resonantes R&ouml;ntgenlicht (lila) erzeugt einen rumpfangeregten Zustand am Sauerstoffatom (rot) des H<sub>2</sub>O-Molek&uuml;ls. Dies verursacht ultraschnelle Protonendynamik. Die Potentialfl&auml;che des elektronischen Grundzustands (unten) und die Bindungsdynamik werden durch spektrale Merkmale der resonanten inelastischen R&ouml;ntgenstreuung erfasst (rechts).</p> <p>

Resonantes Röntgenlicht (lila) erzeugt einen rumpfangeregten Zustand am Sauerstoffatom (rot) des H2O-Moleküls. Dies verursacht ultraschnelle Protonendynamik. Die Potentialfläche des elektronischen Grundzustands (unten) und die Bindungsdynamik werden durch spektrale Merkmale der resonanten inelastischen Röntgenstreuung erfasst (rechts).

© Martin Künsting /HZB

Synchrotronlichtquellen liefern brillantes Licht mit dem Fokus auf Röntgenstrahlung und haben unsere Fähigkeiten der Charakterisierung von Materialien enorm erweitert. In den Reviews of Modern Physics gibt ein internationales Team nun einen Überblick über elastische und inelastische Röntgenstreuprozesse, erläutert den theoretischen Unterbau und beleuchtet, welche Einblicke diese Methoden in physikalische, chemische, bio- und energie-relevante Themen eröffnen.

„Mit Röntgenstreuung lassen sich breit gefächerte Fragestellungen untersuchen und lösen: Angefangen mit den Eigenschaften und Anregungen funktionaler Festkörper, über homogene und heterogene chemische Prozesse und Reaktionen, bis hin zum Pfad eines Protons bei der Spaltung von Wasser“, erläutert Prof. Dr. Alexander Föhlisch, der am HZB das Institut Methoden und Instrumentierung der Forschung mit Synchrotronstrahlung leitet.

Der Beitrag gibt einen Überblick über experimentelle und theoretische Ergebnisse auf dem Gebiet der resonanten Streuung von durchstimmbarer weicher und harter Röntgenstrahlung. Dabei liegt der Schwerpunkt auf der resonanten inelastischen Röntgenstreuung (RIXS) und der resonanten Auger-Streuung (RAS). In der Übersicht skizzieren die Autoren die wichtigsten Errungenschaften aus den letzten zwei Jahrzehnten an Synchrotronlichtquellen bis hin zu neuesten Fortschritten bei zeitaufgelösten Studien mit Freie-Elektronen-Röntgenlasern.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Die Zukunft der Korallen – Was Röntgenuntersuchungen zeigen können
    Interview
    12.11.2025
    Die Zukunft der Korallen – Was Röntgenuntersuchungen zeigen können
    In diesem Sommer war es in allen Medien. Angetrieben durch die Klimakrise haben nun auch die Ozeane einen kritischen Punkt überschritten, sie versauern immer mehr. Meeresschnecken zeigen bereits erste Schäden, aber die zunehmende Versauerung könnte auch die kalkhaltigen Skelettstrukturen von Korallen beeinträchtigen. Dabei leiden Korallen außerdem unter marinen Hitzewellen und Verschmutzung, die weltweit zur Korallenbleiche und zum Absterben ganzer Riffe führen. Wie genau wirkt sich die Versauerung auf die Skelettbildung aus?

    Die Meeresbiologin Prof. Dr. Tali Mass von der Universität Haifa, Israel, ist Expertin für Steinkorallen. Zusammen mit Prof. Dr. Paul Zaslansky, Experte für Röntgenbildgebung an der Charité Berlin, untersuchte sie an BESSY II die Skelettbildung bei Babykorallen, die unter verschiedenen pH-Bedingungen aufgezogen wurden. Antonia Rötger befragte die beiden Experten online zu ihrer aktuellen Studie und der Zukunft der Korallenriffe. 

  • Susanne Nies in EU-Beratergruppe zu Green Deal berufen
    Nachricht
    12.11.2025
    Susanne Nies in EU-Beratergruppe zu Green Deal berufen
    Dr. Susanne Nies leitet am HZB das Projekt Green Deal Ukraina, das den Aufbau eines nachhaltigen Energiesystems in der Ukraine unterstützt. Die Energieexpertin wurde nun auch in die wissenschaftliche Beratergruppe der Europäischen Kommission berufen, um im Zusammenhang mit der Netto-Null-Zielsetzung (DG GROW) regulatorische Belastungen aufzuzeigen und dazu zu beraten.
  • Langzeit-Stabilität von Perowskit-Solarzellen deutlich gesteigert
    Science Highlight
    07.11.2025
    Langzeit-Stabilität von Perowskit-Solarzellen deutlich gesteigert
    Perowskit-Solarzellen sind kostengünstig in der Herstellung und liefern viel Leistung pro Fläche. Allerdings sind sie bisher noch nicht stabil genug für den Langzeit-Einsatz. Nun hat ein internationales Team unter der Leitung von Prof. Dr. Antonio Abate durch eine neuartige Beschichtung der Grenzfläche zwischen Perowskitschicht und dem Top-Kontakt die Stabilität drastisch erhöht. Dabei stieg der Wirkungsgrad auf knapp 27 Prozent, was dem aktuellen state-of-the-art entspricht. Dieser hohe Wirkungsgrad nahm auch nach 1.200 Stunden im Dauerbetrieb nicht ab. An der Studie waren Forschungsteams aus China, Italien, der Schweiz und Deutschland beteiligt. Sie wurde in Nature Photonics veröffentlicht.