Royal Society of Chemistry praises HZB team’s paper on hybrid perovskite structures

T-x phase diagram has been created for MAPb(I,Br)<sub>3</sub> for the first time. It was revealed that the phase transition temperature of the iodine-rich mixed crystals drops as iodine content increases.

T-x phase diagram has been created for MAPb(I,Br)3 for the first time. It was revealed that the phase transition temperature of the iodine-rich mixed crystals drops as iodine content increases. © RSC Advances

For the 10th anniversary collection of its journal, the Royal Society of Chemistry (RSC) selected a paper published by a team from HZB. The paper from HZB is described as one of the most important contributions in the field of solar energy in recent years. The journal praised 23 selected papers that had been often cited or downloaded, and which offered a valuable advantage for further research. 

The HZB paper focuses on the systematic characterisation of hybrid perovskites containing mixed halides (MAPb(I,Br)3). The samples of the mixed crystals were produced in powder form using a solvent-based synthesis method. The research team from HZB’s Department Structure and Dynamics of Energy Materials (SE-ASD) showed that the crystal structure of the mixed crystal compounds is temperature dependent. As the materials go through different phase transitions, they form either a tetragonal or a cubic perovskite structure depending on the temperature and chemical composition. Now, a comprehensive T-x phase diagram has been created for this solid solution series for the first time. It was revealed that the phase transition temperature of the iodine-rich mixed crystals drops as iodine content increases, which stabilises the cubic perovskite structure at room temperature.

For their temperature-dependent in-situ experiments, HZB’s team used the DIFFRACTION end station of the BESSY II beamline KMC-2. They additionally determined the band gap energy and studied the optoelectronic properties of these perovskite compounds (among other things using photoluminescence spectroscopy).

The results led to a fundamental structural characterisation of these mixed halide perovskite compounds. Although the study was based on powder-form materials, the insights gained on the temperature-dependent behaviour of these hybrid halide perovskites can be now be applied to thin-film materials like those used to create absorbers for thin-film solar cells.     

The paper was authored by Frederike Lehmann as part of her doctoral thesis in the graduate school HyPerCell. Her thesis was supervised by Prof. Dr. Susan Schorr and Dr. Alexandra Franz from the HZB Department Structure and Dynamics of Energy Materials and by Prof. Dr. Andreas Taubert from Potsdam University. “The paper was an excellent team achievement, and we are delighted that the RSC chose to write about us,” says Susan Schorr.

Click here for the RSC Advances Anniversary Collection “Solar Energy

(sz)

  • Copy link

You might also be interested in

  • Green fabrication of hybrid materials as highly sensitive X-ray detectors
    Science Highlight
    08.05.2025
    Green fabrication of hybrid materials as highly sensitive X-ray detectors
    New bismuth-based organic-inorganic hybrid materials show exceptional sensitivity and long-term stability as X-ray detectors, significantly more sensitive than commercial X-ray detectors. In addition, these materials can be produced without solvents by ball milling, a mechanochemical synthesis process that is environmentally friendly and scalable. More sensitive detectors would allow for a reduction in the radiation exposure during X-ray examinations.
  • Electrical energy storage: BAM, HZB, and HU Berlin plan joint Berlin Battery Lab
    News
    07.05.2025
    Electrical energy storage: BAM, HZB, and HU Berlin plan joint Berlin Battery Lab
    The Federal Institute for Materials Research and Testing (BAM), the Helmholtz-Zentrum Berlin (HZB), and Humboldt University of Berlin (HU Berlin) have signed a memorandum of understanding (MoU) to establish the Berlin Battery Lab. The lab will pool the expertise of the three institutions to advance the development of sustainable battery technologies. The joint research infrastructure will also be open to industry for pioneering projects in this field.
  • Battery research: visualisation of aging processes operando
    Science Highlight
    29.04.2025
    Battery research: visualisation of aging processes operando
    Lithium button cells with electrodes made of nickel-manganese-cobalt oxides (NMC) are very powerful. Unfortunately, their capacity decreases over time. Now, for the first time, a team has used a non-destructive method to observe how the elemental composition of the individual layers in a button cell changes during charging cycles. The study, now published in the journal Small, involved teams from the Physikalisch-Technische Bundesanstalt (PTB), the University of Münster, researchers from the SyncLab research group at HZB and the BLiX laboratory at the Technical University of Berlin. Measurements were carried out in the BLiX laboratory and at the BESSY II synchrotron radiation source.