Royal Society of Chemistry würdigt HZB-Beitrag über hybride Perowskit-Strukturen

Das Phasendiagramm beschreibt die Temperatur-Struktur-Beziehung der Hybrid-Perowskit-Verbindung mit gemischten Haliden (MAPb(I,Br)<sub>3</sub>). Die Phasen&uuml;bergangstemperatur der Jod-reichen Mischkristalle sinkt mit steigendem Jod-Gehalt.

Das Phasendiagramm beschreibt die Temperatur-Struktur-Beziehung der Hybrid-Perowskit-Verbindung mit gemischten Haliden (MAPb(I,Br)3). Die Phasenübergangstemperatur der Jod-reichen Mischkristalle sinkt mit steigendem Jod-Gehalt. © RSC Advances

Anlässlich des 10. Geburtstags hat die Fachzeitschrift RSC Advances der Royal Society of Chemistry (RSC) die Publikation eines HZB-Teams für ihre Jubiläumszusammenstellung ausgewählt. Die Arbeit aus dem HZB gilt als einer der bedeutendsten Beiträge der letzten Jahre im Bereich Solarenergie. Die ausgewählten 23 Publikationen seien sehr häufig zitiert oder heruntergeladen worden und böten einen wertvollen Vorteil für die weitere Forschung, heißt es in der Begründung der Zeitschrift. 

Im Mittelpunkt der Publikation steht die systematische Charakterisierung von Hybrid-Perowskiten mit gemischten Haliden (MAPb(I,Br)3). Die Mischkristall-Proben wurden mittels einer lösungsbasierten Synthesemethode in Pulverform hergestellt. Das Forschungsteam aus der Abteilung „Struktur und Dynamik von Energiematerialien“ (SE-ASD) zeigte, dass die Kristallstruktur der Mischkristall-Verbindungen abhängig von der Temperatur ist.

Das Material durchläuft verschiedene Phasenübergänge und bildet dabei in Abhängigkeit von der Temperatur und der chemischen Zusammensetzung eine tetragonale oder kubische Perowskit-Struktur aus. Nun ist für diese Mischkristallreihe erstmals ein umfassendes Phasendiagramm erstellt worden, das die Temperatur-Struktur-Beziehung beschreibt. Dabei zeigte sich, dass die Phasenübergangstemperatur der Jod-reichen Mischkristalle mit steigendem Jod-Gehalt sinkt und damit die kubische Perowskit-Struktur bei Raumtemperatur stabilisiert wird.

Für die temperaturabhängigen in-situ Experimente nutzte das HZB-Team die Diffraction-Endstation der KMC-2-Beamline an BESSY II. Ergänzend bestimmte es auch die Bandlückenenergie und untersuchte die optoelektronischen Eigenschaften dieser Perowskit-Verbindungen (u.a. mit Photolumineszenz-Spektrokopie).

Die Ergebnisse führten zu einer grundlegenden strukturellen Charakterisierung dieser Perowskit-Verbindungen. Auch wenn die Untersuchung auf Pulvermaterialien basierte, sind die gewonnenen Erkenntnisse über das temperaturabhängige Verhalten dieser hybriden Halid-Perowskite auch für Dünnschichtmaterialien interessant, da sich daraus Absorber für Dünnschicht-Solarzellen herstellen lassen.      

Die Publikation wurde von Frederike Lehmann im Rahmen ihrer Doktorarbeit in der Graduiertenschule HyPerCell erstellt. Die Betreuerinnen ihrer Arbeit waren Prof. Dr. Susan Schorr und Dr. Alexandra Franz aus der HZB-Abteilung „Struktur und Dynamik von Energiematerialien“ sowie Prof. Dr. Andreas Taubert von der Universität Potsdam. „Die Publikation war eine tolle Teamleistung und wir freuen uns, dass uns die RSC ausgewählt hat“, sagt Susan Schorr.

Hier finden Sie die alle Beiträge der Jubiläumskollektion.

(sz)

  • Link kopieren

Das könnte Sie auch interessieren

  • HZB-Patent zur Halbleitercharakterisierung geht in die Serienproduktion
    Nachricht
    10.10.2024
    HZB-Patent zur Halbleitercharakterisierung geht in die Serienproduktion
    Ein HZB-Team hat einen innovativen Monochromator entwickelt, der nun von einem Unternehmen produziert und vermarktet wird. Das Gerät ermöglicht es, die optoelektronischen Eigenschaften von Halbleitermaterialien kontinuierlich und rasch mit hoher Präzision zu erfassen, und zwar über einen breiten Spektralbereich vom nahen Infrarot bis ins tiefe Ultraviolett. Dabei wird Streulicht effizient unterdrückt. Die Innovation ist für die Entwicklung neuer Materialien interessant und auch einsetzbar, um industrielle Prozesse besser zu kontrollieren.
  • Photovoltaik-Reallabor knackt die Marke von 100 Megawattstunden
    Nachricht
    27.09.2024
    Photovoltaik-Reallabor knackt die Marke von 100 Megawattstunden
    Vor rund drei Jahren ging das Reallabor am HZB in Betrieb. Seitdem liefert die Photovoltaik-Fassade Strom aus Sonnenlicht. Am 27. September 2024 wurde die Marke von 100 Megawattstunden erreicht.

  • Wechselströme für alternatives Rechnen mit Magneten
    Science Highlight
    26.09.2024
    Wechselströme für alternatives Rechnen mit Magneten
    Eine neue Studie der Universität Wien, des Max-Planck-Instituts für Intelligente Systeme in Stuttgart und der Helmholtz-Zentren in Berlin und Dresden stellt einen wichtigen Schritt dar, Computerbauelemente weiter zu miniaturisieren und energieeffizienter zu machen. Die in der renommierten Fachzeitschrift Science Advances veröffentlichte Arbeit zeigt neue Möglichkeiten, reprogrammierbare magnetische Schaltungen zu schaffen, indem Spinwellen durch Wechselströme angeregt und bei Bedarf umgelenkt werden. Die Experimente dafür wurden an der Maxymus-Beamline an BESSY II durchgeführt.