Strahldiagnostik für zukünftige Beschleuniger im Tischformat

Aus den Interferenzmustern bei unterschiedlichen Brennweiten und Photonenintensitäten lassen sich Aussagen über die Qualität des Strahls gewinnen.

Aus den Interferenzmustern bei unterschiedlichen Brennweiten und Photonenintensitäten lassen sich Aussagen über die Qualität des Strahls gewinnen. © www.nature.com/articles/s42005-021-00717-x

Die Simulation zeigt das Prinzip eines Laser-Wakefield-Beschleunigers: Der Laserpuls (nicht abgebildet) bewegt sich nach rechts und verdrängt alle Plasmaelektronen aus seiner Bahn. Dabei erzeugt er Blasen aus positiv geladenen Ionen, deren starke elektrische Felder Elektronen anziehen und beschleunigen, während sie mit dem Laserpuls mitfliegen.

Die Simulation zeigt das Prinzip eines Laser-Wakefield-Beschleunigers: Der Laserpuls (nicht abgebildet) bewegt sich nach rechts und verdrängt alle Plasmaelektronen aus seiner Bahn. Dabei erzeugt er Blasen aus positiv geladenen Ionen, deren starke elektrische Felder Elektronen anziehen und beschleunigen, während sie mit dem Laserpuls mitfliegen. © Joshua Ludwig, cc 4.0 wikimedia.org/wiki/File:Frame_000000100_extra_terrible_resolution.png

Seit Jahrzehnten wurden Teilchenbeschleuniger immer größer. Inzwischen haben Ringbeschleuniger mit Umfängen von vielen Kilometern eine praktische Grenze erreicht. Auch Linearbeschleuniger im GHz-Bereich erfordern sehr große Baulängen. Seit einigen Jahren gibt es jedoch eine Alternative: „Teilchenbeschleuniger im Tischformat“, die auf der Laseranregung von Kielwellen in Plasmen (laser wakefield) basieren. Solche kompakten Teilchenbeschleuniger wären insbesondere für künftige beschleunigergetriebene Lichtquellen interessant, werden aber auch für die Hochenergiephysik untersucht. Ein Team aus dem Helmholtz-Zentrum Berlin (HZB) und der Physikalisch-Technischen Bundesanstalt (PTB) hat eine Methode entwickelt, um den Querschnitt der so beschleunigten Elektronenpakete präzise zu vermessen.  Dadurch rücken Anwendungen dieser neuen Beschleunigertechnologien für Medizin und Forschung näher.

Das Prinzip der Laser-Wakefield-Beschleuniger: Ein Hochleistungslaser regt in einem Plasma eine Ladungswelle an, die sich mit der Geschwindigkeit des Laserpulses fortpflanzt und ihrem „Kielwasser“ Elektronen hinterherzieht und so beschleunigt. Elektronenenergien im GeV-Bereich können mit dieser Technik schon seit längerem erreicht werden. Allerdings sind die so erzeugten Elektronenpakete bisher zu klein und zu schlecht fokussiert, um die von ihnen abgegebene Synchrotronstrahlung zu nutzen, ein intensives, kohärentes Licht, das für die Forschung in vielen unterschiedlichen Disziplinen eingesetzt wird.

Anmerkung:

Die hier geschilderte Arbeit findet im Rahmen des Projekts ATHENA – „Accelerator Technology Helmholtz Infrastructure“ statt.  Das ist eine neue Forschungs- und Entwicklungsplattform der Helmholtz-Gemeinschaft für Beschleunigertechnologien. Auf Grundlage innovativer plasmabasierter Teilchenbeschleuniger und hochmoderner Lasertechnologie sollen zwei Leuchtturmprojekte aufgebaut werden: bei DESY in Hamburg eine Elektronen- und in Dresden eine Hadronenbeschleunigeranlage. An beiden Anlagen sollen verschiedener Einsatzgebiete entwickelt werden, die von einem kompakten Freie-Elektronen-Laser über neuartige medizinische Anwendungen bis hin zu neuen Einsatzmöglichkeiten in Kern- und Teilchenphysik reichen.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Ernst-Eckhard-Koch-Preis und Innovationspreis Synchrotronstrahlung 2025
    Nachricht
    05.12.2025
    Ernst-Eckhard-Koch-Preis und Innovationspreis Synchrotronstrahlung 2025
    Der Freundeskreis des HZB zeichnete auf dem 27. Nutzertreffen BESSY@HZB die Dissertation von Dr. Enggar Pramanto Wibowo (Friedrich-Alexander-Universität Erlangen-Nürnberg) aus.
    Darüber hinaus wurde der Europäische Innovationspreis Synchrotronstrahlung 2025 an Prof. Tim Salditt (Georg-August-Universität Göttingen) sowie an die Professoren Danny D. Jonigk und Maximilian Ackermann (beide, Universitätsklinikum der RWTH Aachen) verliehen. 
  • Gute Aussichten für Zinn-Perowskit-Solarzellen
    Science Highlight
    03.12.2025
    Gute Aussichten für Zinn-Perowskit-Solarzellen
    Perowskit-Solarzellen gelten weithin als die Photovoltaik-Technologie der nächsten Generation. Allerdings sind Perowskit-Halbleiter langfristig noch nicht stabil genug für den breiten kommerziellen Einsatz. Ein Grund dafür sind wandernde Ionen, die mit der Zeit dazu führen, dass das Halbleitermaterial degradiert. Ein Team des HZB und der Universität Potsdam hat nun die Ionendichte in vier verschiedenen Perowskit-Halbleitern untersucht und dabei erhebliche Unterschiede festgestellt. Eine besonders geringe Ionendichte wiesen Zinn-Perowskit-Halbleiter auf, die mit einem alternativen Lösungsmittel hergestellt wurden – hier betrug die Ionendichte nur ein Zehntel im Vergleich zu Blei-Perowskit-Halbleitern. Damit könnten Perowskite auf Zinnbasis ein besonders großes Potenzial zur Herstellung von umweltfreundlichen und besonders stabilen Solarzellen besitzen.
  • Synchrotron-strahlungsquellen: Werkzeugkästen für Quantentechnologien
    Science Highlight
    01.12.2025
    Synchrotron-strahlungsquellen: Werkzeugkästen für Quantentechnologien
    Synchrotronstrahlungsquellen erzeugen hochbrillante Lichtpulse, von Infrarot bis zu harter Röntgenstrahlung, mit denen sich tiefe Einblicke in komplexe Materialien gewinnen lassen. Ein internationales Team hat nun im Fachjournal Advanced Functional Materials einen Überblick über Synchrotronmethoden für die Weiterentwicklung von Quantentechnologien veröffentlicht: Anhand konkreter Beispiele zeigen sie, wie diese einzigartigen Werkzeuge dazu beitragen können, das Potenzial von Quantentechnologien wie z. B. Quantencomputing zu erschließen, Produktionsbarrieren zu überwinden und den Weg für zukünftige Durchbrüche zu ebnen.