A sharp look into tiny ferroelectric crystals

Map obtained for a thin barium titanate film after clustering the data measured by contact Kelvin probe force microscopy (cKPFM) by a machine learning method. From this map, scientists can obtain detailed information on how the ferroelectric domains are distributed and what their respective polarization amplitude is.

Map obtained for a thin barium titanate film after clustering the data measured by contact Kelvin probe force microscopy (cKPFM) by a machine learning method. From this map, scientists can obtain detailed information on how the ferroelectric domains are distributed and what their respective polarization amplitude is. © HZB

What happens to ferroelectric materials when their dimensions are greatly reduced? A team of researchers at HZB has now been able to show how this question can be answered in a detailed way.

Ferroelectric materials have a special inner structure. In the crystalline materials, ions align themselves differently within individual areas, the domains. This so-called polarisation can be changed or switched by electric fields or external pressure. These properties make ferroelectric materials interesting for various technical applications. For example, they are suitable as a material for capacitors - or, because the domains are very small, for storing large amounts of data in a small space.

But how do the ferroelectric properties change when the dimensions of the material are greatly reduced, for example to use them in nanoelectronic components? Experiments have shown that shrinking has enormous effects on the pattern of ferroelectric polarisation. “When the dimensions are reduced, the ferroelectric domains can take on a very different shape with a spatial extension of only several nanometers," explains Prof. Dr. Catherine Dubourdieu, head of the Institute Functional Oxides for Energy Efficient IT at the Helmholtz Zentrum Berlin für Materialien und Energie (HZB). "The diversity of electrical structures on a nanocrystalline scale opens up a whole new exciting horizon both for the understanding of the physics of these objects and for their potential applications. One key challenge is to be able to visualize such tiny domains in a non-destructive way.”

Catherine Dubourdieu and her team together with colleagues at Oak Ridge National Laboratory (ORNL) in the USA have now found a way to map the polarization pattern in thin ferroelectric layers precisely and non-destructively. To do this, the researchers relied on so-called contact Kelvin probe force microscopy (cKPFM) - a method that measures the material's electromechanical response under an electrical bias. To evaluate the big amount of data generated by mapping as low as 8x8 nm2 pixel size, the HZB team applied a machine learning method. This made it possible to spatially resolve ferroelectric domains of less than 10 nanometres in size and of different polarization amplitudes. As sample material, the HZB researchers used a thin layer of barium titanate (BaTiO3) in two crystalline forms: the so-called perovskite structure (one of the best-known ferroelectric materials) and the hexagonal structure, which is not ferroelectric at room temperature.

To check the reliability of the measurement method used, the HZB and ORNL teams also analysed the nanostructures using transmission electron microscopy (TEM). "The results of both experimental methods were in complete agreement," Dubourdieu is pleased to report. The scientists were also able to use this method to follow the ferroelectric pattern evolution while the sample was heated up to its paraelectric state. This opens up the possibility of also investigating the temperature dependence of the ferroelectric domain distribution and observing how ferroelectric domains form spatially below the so-called Curie temperature.

"Our results create a promising new perspective to study a large variety of polarization patterns at the nanoscale. This could lead, for example, to mapping the distribution of topological polar textures such as polar skyrmions which have been shown to have dimensions of about 10 nm. It could also be used to discriminate the polar domains from the non-polar ones in polycrystalline HfO2-based ferroelectric thin films, a type of materials intensively studied for their potential integration in current nanoelectronics" says Dubourdieu. She adds “In the future, mapping ferroelectricity at the nanoscale with the help of machine learning will undoubtedly bring insights into phenomena occurring when dimensions are reduced and bring benefit for the integration of ferroelectrics into nanodevices.”

To the publication:

ACS Appl. Electron. Mater. (2021)

Sub-10 nm Probing of Ferroelectricity in Heterogeneous Materials by Machine Learning Enabled Contact Kelvin Probe Force Microscopy

Sebastian W. Schmitt, Rama K. Vasudevan, Maurice Seifert, Albina Y. Borisevich, Veeresh Deshpande, Sergei V. Kalinin, and Catherine Dubourdieu

doi: 10.1021/acsaelm.1c00569



rb

  • Copy link

You might also be interested in

  • Long-term stability for perovskite solar cells: a big step forward
    Science Highlight
    07.11.2025
    Long-term stability for perovskite solar cells: a big step forward
    Perovskite solar cells are inexpensive to produce and generate a high amount of electric power per surface area. However, they are not yet stable enough, losing efficiency more rapidly than the silicon market standard. Now, an international team led by Prof. Dr. Antonio Abate has dramatically increased their stability by applying a novel coating to the interface between the surface of the perovskite and the top contact layer. This has even boosted efficiency to almost 27%, which represents the state-of-the-art. After 1,200 hours of continuous operation under standard illumination, no decrease in efficiency was observed. The study involved research teams from China, Italy, Switzerland and Germany and has been published in Nature Photonics.
  • Energy of charge carrier pairs in cuprate compounds
    Science Highlight
    05.11.2025
    Energy of charge carrier pairs in cuprate compounds
    High-temperature superconductivity is still not fully understood. Now, an international research team at BESSY II has measured the energy of charge carrier pairs in undoped La₂CuO₄. Their findings revealed that the interaction energies within the potentially superconducting copper oxide layers are significantly lower than those in the insulating lanthanum oxide layers. These results contribute to a better understanding of high-temperature superconductivity and could also be relevant for research into other functional materials.
  • Electrocatalysis with dual functionality – an overview
    Science Highlight
    31.10.2025
    Electrocatalysis with dual functionality – an overview
    Hybrid electrocatalysts can produce green hydrogen, for example, and valuable organic compounds simultaneously. This promises economically viable applications. However, the complex catalytic reactions involved in producing organic compounds are not yet fully understood. Modern X-ray methods at synchrotron sources such as BESSY II, enable catalyst materials and the reactions occurring on their surfaces to be analysed in real time, in situ and under real operating conditions. This provides insights that can be used for targeted optimisation. A team has now published an overview of the current state of knowledge in Nature Reviews Chemistry.