A sharp look into tiny ferroelectric crystals

Map obtained for a thin barium titanate film after clustering the data measured by contact Kelvin probe force microscopy (cKPFM) by a machine learning method. From this map, scientists can obtain detailed information on how the ferroelectric domains are distributed and what their respective polarization amplitude is.

Map obtained for a thin barium titanate film after clustering the data measured by contact Kelvin probe force microscopy (cKPFM) by a machine learning method. From this map, scientists can obtain detailed information on how the ferroelectric domains are distributed and what their respective polarization amplitude is. © HZB

What happens to ferroelectric materials when their dimensions are greatly reduced? A team of researchers at HZB has now been able to show how this question can be answered in a detailed way.

Ferroelectric materials have a special inner structure. In the crystalline materials, ions align themselves differently within individual areas, the domains. This so-called polarisation can be changed or switched by electric fields or external pressure. These properties make ferroelectric materials interesting for various technical applications. For example, they are suitable as a material for capacitors - or, because the domains are very small, for storing large amounts of data in a small space.

But how do the ferroelectric properties change when the dimensions of the material are greatly reduced, for example to use them in nanoelectronic components? Experiments have shown that shrinking has enormous effects on the pattern of ferroelectric polarisation. “When the dimensions are reduced, the ferroelectric domains can take on a very different shape with a spatial extension of only several nanometers," explains Prof. Dr. Catherine Dubourdieu, head of the Institute Functional Oxides for Energy Efficient IT at the Helmholtz Zentrum Berlin für Materialien und Energie (HZB). "The diversity of electrical structures on a nanocrystalline scale opens up a whole new exciting horizon both for the understanding of the physics of these objects and for their potential applications. One key challenge is to be able to visualize such tiny domains in a non-destructive way.”

Catherine Dubourdieu and her team together with colleagues at Oak Ridge National Laboratory (ORNL) in the USA have now found a way to map the polarization pattern in thin ferroelectric layers precisely and non-destructively. To do this, the researchers relied on so-called contact Kelvin probe force microscopy (cKPFM) - a method that measures the material's electromechanical response under an electrical bias. To evaluate the big amount of data generated by mapping as low as 8x8 nm2 pixel size, the HZB team applied a machine learning method. This made it possible to spatially resolve ferroelectric domains of less than 10 nanometres in size and of different polarization amplitudes. As sample material, the HZB researchers used a thin layer of barium titanate (BaTiO3) in two crystalline forms: the so-called perovskite structure (one of the best-known ferroelectric materials) and the hexagonal structure, which is not ferroelectric at room temperature.

To check the reliability of the measurement method used, the HZB and ORNL teams also analysed the nanostructures using transmission electron microscopy (TEM). "The results of both experimental methods were in complete agreement," Dubourdieu is pleased to report. The scientists were also able to use this method to follow the ferroelectric pattern evolution while the sample was heated up to its paraelectric state. This opens up the possibility of also investigating the temperature dependence of the ferroelectric domain distribution and observing how ferroelectric domains form spatially below the so-called Curie temperature.

"Our results create a promising new perspective to study a large variety of polarization patterns at the nanoscale. This could lead, for example, to mapping the distribution of topological polar textures such as polar skyrmions which have been shown to have dimensions of about 10 nm. It could also be used to discriminate the polar domains from the non-polar ones in polycrystalline HfO2-based ferroelectric thin films, a type of materials intensively studied for their potential integration in current nanoelectronics" says Dubourdieu. She adds “In the future, mapping ferroelectricity at the nanoscale with the help of machine learning will undoubtedly bring insights into phenomena occurring when dimensions are reduced and bring benefit for the integration of ferroelectrics into nanodevices.”

To the publication:

ACS Appl. Electron. Mater. (2021)

Sub-10 nm Probing of Ferroelectricity in Heterogeneous Materials by Machine Learning Enabled Contact Kelvin Probe Force Microscopy

Sebastian W. Schmitt, Rama K. Vasudevan, Maurice Seifert, Albina Y. Borisevich, Veeresh Deshpande, Sergei V. Kalinin, and Catherine Dubourdieu

doi: 10.1021/acsaelm.1c00569



rb

  • Copy link

You might also be interested in

  • Peat as a sustainable precursor for fuel cell catalyst materials
    Science Highlight
    25.11.2025
    Peat as a sustainable precursor for fuel cell catalyst materials
    Iron-nitrogen-carbon catalysts have the potential to replace the more expensive platinum catalysts currently used in fuel cells. This is shown by a study conducted by researchers from the Helmholtz-Zentrum Berlin (HZB), Physikalisch-Technische Bundesanstalt (PTB) and universities in Tartu and Tallinn, Estonia. At BESSY II, the team observed the formation of complex microstructures within various samples. They then analysed which structural parameters were particularly important for fostering the preferred electrochemical reactions. The raw material for such catalysts is well decomposed peat.
  • Helmholtz Investigator Group on magnons
    News
    24.11.2025
    Helmholtz Investigator Group on magnons
    Dr Hebatalla Elnaggar is setting up a new Helmholtz Investigator Group at HZB. At BESSY II, the materials scientist will investigate so-called magnons in magnetic perovskite thin films. The aim is to lay the foundations for future terahertz magnon technology: magnonic devices operating in the terahertz range could process data using a fraction of the energy required by the most advanced semiconductor devices, and at speeds up to a thousand times faster.
  • The future of corals – what X-rays can tell us
    Interview
    12.11.2025
    The future of corals – what X-rays can tell us
    This summer, it was all over the media. Driven by the climate crisis, the oceans have now also passed a critical point, the absorption of CO2 is making the oceans increasingly acidic. The shells of certain sea snails are already showing the first signs of damage. But also the skeleton structures of coral reefs are deteriorating in more acidic conditions. This is especially concerning given that corals are already suffering from marine heatwaves and pollution, which are leading to bleaching and finally to the death of entire reefs worldwide. But how exactly does ocean acidification affect reef structures?

    Prof. Dr. Tali Mass, a marine biologist from the University of Haifa, Israel, is an expert on stony corals. Together with Prof. Dr. Paul Zaslansky, X-ray imaging expert from Charité Berlin, she investigated at BESSY II the skeleton formation in baby corals, raised under different pH conditions. Antonia Rötger spoke online with the two experts about the results of their recent study and the future of coral reefs.