Oberflächenanalytik an BESSY II: Schärfere Einblicke in Dünnschicht-Systeme

Die Illustration zeigt, wie die APECS-Messung an einem Nickel-Einkristall mit oxidierter Oberfläche funktioniert. Ein Röntgenstrahl ionisiert Atome, entweder im Nickel-Kristall oder an der Oberfläche. Die angeregten Photoelektronen von der Oberfläche und aus dem Kristall haben leicht unterschiedliche Bindungsenergien. Die Auger-Elektronen ermöglichen es, die Herkunft der Photoelektronen zu bestimmen.

Die Illustration zeigt, wie die APECS-Messung an einem Nickel-Einkristall mit oxidierter Oberfläche funktioniert. Ein Röntgenstrahl ionisiert Atome, entweder im Nickel-Kristall oder an der Oberfläche. Die angeregten Photoelektronen von der Oberfläche und aus dem Kristall haben leicht unterschiedliche Bindungsenergien. Die Auger-Elektronen ermöglichen es, die Herkunft der Photoelektronen zu bestimmen. © Martin Künsting /HZB

Grenzflächen in Halbleiter-Bauelementen oder Solarzellen spielen für ihre Funktionalität eine entscheidende Rolle. Dennoch war es bislang oft schwierig, mit spektroskopischen Verfahren angrenzende Dünnschichten getrennt zu untersuchen. Ein HZB-Team hat an BESSY II zwei verschiedene spektroskopische Methoden kombiniert und an einem Modellsystem demonstriert, wie gut die Unterscheidung damit gelingt.

Photo-Elektronen-Spektroskopie (PES) ermöglicht die chemische Analyse von Oberflächen und Halbleiterschichten. Dabei trifft ein Röntgenpuls (Photonen) auf die Probe und regt Elektronen an, die Probe zu verlassen. Mit speziellen Detektoren ist es dann möglich, Richtung und Bindungsenergie dieser Elektronen zu messen und so Auskunft über elektronische Strukturen und chemische Umgebung der Atome im Material zu erhalten. Liegen die Bindungsenergien jedoch in angrenzenden Schichten nahe beieinander, dann ist es mit PES kaum möglich, diese Schichten voneinander zu unterscheiden.

 Ein Team am HZB hat nun gezeigt, wie sich dennoch präzise Zuordnungen erreichen lassen: Sie kombinierten Photo-Elektronen-Spektroskopie mit einer zweiten spektroskopischen Methode: der Auger-Elektronen Spektroskopie. Dabei werden Photoelektronen und Auger-Elektronen zeitgleich gemessen, was der resultierenden Methode ihren Namen gibt: APECS für Auger-Elektronen-Photoelektronen-Koinzidenzspektroskopie (APECS).  

Ein Vergleich der so ermittelten Bindungsenergien lässt dann Rückschlüsse auf die jeweilige chemische Umgebung zu und ermöglicht so die Unterscheidung feinster Schichten. An einer einkristallinen Nickel-Probe, einem sehr guten Modellsystem für viele Metalle, konnte das Team nun zeigen, wie gut das funktioniert: Die Physiker konnten aus den Messdaten präzise die Verschiebung der Bindungsenergie der Elektronen ermitteln, je nachdem, ob diese aus der dünnen oxidierten Oberfläche oder aus den tieferen Kristallschichten stammten.

„Zunächst waren wir skeptisch, ob es gelingen würde, aus den Daten wirklich eine klare Unterscheidung herauszulesen. Wir waren begeistert über den deutlichen Effekt“, sagt Artur Born, Erstautor der Arbeit, der im Team von Prof. Alexander Föhlisch seine Doktorarbeit macht.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Selbst organisierte Monolage verbessert auch bleifreie Perowskit-Solarzellen
    Science Highlight
    04.08.2025
    Selbst organisierte Monolage verbessert auch bleifreie Perowskit-Solarzellen
    Zinn-Perowskit-Solarzellen sind nicht nur ungiftig, sondern auch potenziell stabiler als bleihaltige Perowskit-Solarzellen. Allerdings sind sie auch deutlich weniger effizient. Nun gelang einem internationalen Team eine deutliche Verbesserung:  Das Team identifizierte chemische Verbindungen, die von selbst eine molekulare Schicht bilden, welche sehr gut zur Gitterstruktur von Zinn-Perowskiten passt. Auf dieser Monolage lässt sich Zinn-Perowskit mit hervorragender optoelektronischer Qualität aufwachsen.
  • Schriftrollen aus buddhistischem Schrein an BESSY II virtuell entrollt
    Science Highlight
    23.07.2025
    Schriftrollen aus buddhistischem Schrein an BESSY II virtuell entrollt
    In der mongolischen Sammlung des Ethnologischen Museums der Staatlichen Museen zu Berlin befindet sich ein einzigartiger Gungervaa-Schrein. Der Schrein enthält auch drei kleine Röllchen aus eng gewickelten langen Streifen, die in Seide gewickelt und verklebt sind. Ein Team am HZB konnte die Schrift auf den Streifen teilweise sichtbar machen, ohne die Röllchen durch Aufwickeln zu beschädigen. Mit 3D-Röntgentomographie erstellten sie eine Datenkopie des Röllchens und verwendeten im Anschluss ein mathematisches Verfahren, um den Streifen virtuell zu entrollen. Das Verfahren wird auch in der Batterieforschung angewandt.
  • Langzeittest zeigt: Effizienz von Perowskit-Zellen schwankt mit der Jahreszeit
    Science Highlight
    21.07.2025
    Langzeittest zeigt: Effizienz von Perowskit-Zellen schwankt mit der Jahreszeit
    Auf dem Dach eines Forschungsgebäudes am Campus Adlershof läuft ein einzigartiger Langzeitversuch: Die unterschiedlichsten Solarzellen sind dort über Jahre Wind und Wetter ausgesetzt und werden dabei vermessen. Darunter sind auch Perowskit-Solarzellen. Sie zeichnen sich durch hohe Effizienz zu geringen Herstellungskosten aus. Das Team um Dr. Carolin Ulbrich und Dr. Mark Khenkin hat Messdaten aus vier Jahren ausgewertet und in der Fachzeitschrift Advanced Energy Materials vorgestellt. Dies ist die bislang längste Messreihe zu Perowskit-Zellen im Außeneinsatz. Eine Erkenntnis: Standard-Perowskit-Solarzellen funktionieren während der Sommersaison auch über mehrere Jahre sehr gut, lassen jedoch in der dunkleren Jahreszeit etwas nach. Die Arbeit ist ein wichtiger Beitrag, um das Verhalten von Perowskit-Solarzellen unter realen Bedingungen zu verstehen.