Life Time Achievement Award for Roland Müller

Sharing knowledge is a pleasure for Roland Müller. Here he explains to his granddaughter how BESSY II works.

Sharing knowledge is a pleasure for Roland Müller. Here he explains to his granddaughter how BESSY II works. © Privat

Accelerator and control systems expert Roland Müller received the ICALEPCS Lifetime Achievement Award. In the more than thirty years of his career at BESSY, the physicist has advanced many projects on control systems at accelerators and has been particularly committed to the international exchange of knowledge.

At this year’s "International Conference on Accelerator and Large Experimental Physics Control Systems" (ICALEPCS) in Shanghai, Roland Müller (HZB) and Andy Götz (ESRF) were jointly honored for their lifetime achievements. The ICALEPCS Lifetime Achievement Award recognizes individuals who have both made significant contributions to their field of expertise and influenced the international practice of control systems development through vision and leadership. This honor is awarded only irregularly, most recently in 2019, and is therefore a special distinction.  

Over the past thirty years, Roland Müller and Andy Götz have not only led many important projects in the field of control systems to success at their own research facilities, but have also advanced the exchange in the professional community for control and operation of large physics experiments, i.e. telescopes, fusion research facilities, detectors, and especially accelerators. Thus, through great dedication and organizational skills, they have helped to build ICALEPCS into the landmark conference for control systems at large-scale research facilities.  

In his acceptance speech, Müller addressed current demands on research that move him and Andy Götz, in particular the responsibility of science towards society. In consequence acquisition and storage of scientific data must be done according to FAIR principles. Data need to be Findable, Accessible, Interoperable and Repurposable. “Only sharing acquired data allows to look for results, nobody thought about at the moment the experiment was performed. The goal is a truly sustainable exploitation. It will add new scientific values. The rapid progress in fighting the Corona virus gave a glimpse into what can be achieved with a large pool of FAIR data. I am curious to see this evolve.”

Roland Müller has worked at the Berlin electron storage rings BESSY and MLS in the field of control systems since receiving his doctorate in 1988 and has held leading positions in machine operation. He retired in 2019, but continues to contribute his expertise: he is currently working on a digitization concept for BESSY III.

 

arö

  • Copy link

You might also be interested in

  • Battery research: visualisation of aging processes operando
    Science Highlight
    29.04.2025
    Battery research: visualisation of aging processes operando
    Lithium button cells with electrodes made of nickel-manganese-cobalt oxides (NMC) are very powerful. Unfortunately, their capacity decreases over time. Now, for the first time, a team has used a non-destructive method to observe how the elemental composition of the individual layers in a button cell changes during charging cycles. The study, now published in the journal Small, involved teams from the Physikalisch-Technische Bundesanstalt (PTB), the University of Münster, researchers from the SyncLab research group at HZB and the BLiX laboratory at the Technical University of Berlin. Measurements were carried out in the BLiX laboratory and at the BESSY II synchrotron radiation source.
  • New instrument at BESSY II: The OÆSE endstation in EMIL
    Science Highlight
    23.04.2025
    New instrument at BESSY II: The OÆSE endstation in EMIL
    A new instrument is now available at BESSY II for investigating catalyst materials, battery electrodes and other energy devices under operating conditions: the Operando Absorption and Emission Spectroscopy on EMIL (OÆSE) endstation in the Energy Materials In-situ Laboratory Berlin (EMIL). A team led by Raul Garcia-Diez and Marcus Bär showcases the instrument’s capabilities via a proof-of-concept study on electrodeposited copper.
  • Green hydrogen: A cage structured material transforms into a performant catalyst
    Science Highlight
    17.04.2025
    Green hydrogen: A cage structured material transforms into a performant catalyst
    Clathrates are characterised by a complex cage structure that provides space for guest ions too. Now, for the first time, a team has investigated the suitability of clathrates as catalysts for electrolytic hydrogen production with impressive results: the clathrate sample was even more efficient and robust than currently used nickel-based catalysts. They also found a reason for this enhanced performance. Measurements at BESSY II showed that the clathrates undergo structural changes during the catalytic reaction: the three-dimensional cage structure decays into ultra-thin nanosheets that allow maximum contact with active catalytic centres. The study has been published in the journal ‘Angewandte Chemie’.