Spintronik: Exotische ferromagnetische Ordnung in zwei Dimensionen nachgewiesen

STM-Topographie einer einatomaren Lage von CrCl<sub>3</sub> auf Graphen/6H-SiC(0001). Die Vergr&ouml;&szlig;erung zeigt die Korngrenzen.

STM-Topographie einer einatomaren Lage von CrCl3 auf Graphen/6H-SiC(0001). Die Vergrößerung zeigt die Korngrenzen. © Science, doi: 10.1126/science.abd5146

Einem internationalen Team ist es an der Vektormagnetanlage VEKMAG an BESSY II gelungen, eine ungewöhnliche ferromagnetische Eigenschaft in einem zweidimensionalen Material nachzuweisen: eine sogenannte Anisotropie der leichten Ebene („easy-plane“). Die Ergebnisse könnten die Entwicklung von energieeffizienten Informationstechnologien weiter beflügeln und sind nun im renommierten Fachmagazin Science veröffentlicht.

Die feinsten Werkstoffe der Welt sind so dünn wie ein einzelnes Atom. Solche zweidimensionalen oder 2D-Materialien – besonders bekannt ist das aus einer einzelnen Schicht von Kohlenstoff-Atomen bestehende Graphen – elektrisieren Forscherteams weltweit. Denn sie versprechen ungewöhnliche Eigenschaften, die sich mit dreidimensionalen Werkstoffen nicht erreichen lassen. Dadurch stoßen 2D-Materialien das Tor auf zu neuen Anwendungen, etwa in der Informationstechnik, als Displays oder hochempfindliche Sensoren.

Besonderes Interesse wecken sogenannte van-der-Waals-Einzelschichten: Kombinationen von zwei oder mehr atomar dünnen Materialien, die durch schwache elektrostatische van-der-Waals-Kräfte zusammengehalten werden. Durch die Auswahl der Materialschichten und ihre Anordnung zueinander lassen sich elektrische, magnetische oder optische Merkmale einstellen und variieren. Allerdings: Die großflächige, homogene Abscheidung von van-der-Waals-Einzelschichten mit ferromagnetischer Eigenschaft war bislang nicht möglich. Dabei ist gerade diese Art von Magnetismus auf großer Skala für einige potenzielle Anwendungen besonders wichtig – zum Beispiel für neuartige dauerhafte Datenspeicher.

Einem Team des Max-Planck-Instituts für Mikrostrukturphysik in Halle, der Synchrotron-Lichtquelle ALBA in Barcelona und des Helmholtz-Zentrums Berlin für Energie und Materialien (HZB) ist es nun zum ersten Mal gelungen, ein gleichförmiges zweidimensionales Material zu erzeugen – und ein exotisches ferromagnetisches Verhalten darin nachzuweisen; den „easy-plane“-Magnetismus.

Eine fast freischwebende Schicht aus Chrom und Chlor

Als Werkstoff verwendeten die Forschenden aus Deutschland und Spanien Chromchlorid (CrCl3), das der entsprechenden Verbindung aus Chrom und Iod in seiner Struktur ähnelt – aber deutlich robuster sein kann. Eine großflächige monoatomare Schicht dieses Materials brachte das Team in Halle per Molekularstrahl-Epitaxie auf ein Substrat aus Siliziumkarbid auf. Dazwischen legten die Forschenden eine Schicht aus Graphen. „Sie hatte den Zweck, die Wechselwirkung zwischen Chromchlorid und Siliziumkarbid zu dämpfen und so zu verhindern, dass das Substrat die Eigenschaften der monoatomaren CrCl3-Schicht beeinflusst. Das war der Schlüssel, um an die schwer fassbare magnetische ‘leichte Ebene‘ heranzukommen“, erklärt Dr. Amilcar Bedoya-Pinto, der in der Arbeitsgruppe von Prof. Dr. Stuart Parkin am Max-Planck-Institut in Halle forscht. „Im Prinzip erhielten wir so eine fast freischwebende ultradünne Schicht, die nur durch schwache van-der-Waals-Kräfte mit der Graphen-Zwischenlage verbunden war.“

Ziel war es, die Frage zu klären, wie sich die magnetische Ordnung in Chromchlorid zeigt, wenn dieses nur noch aus einer monoatomaren Schicht besteht. In ihrer normalen, dreidimensionalen Form ist die Substanz antiferromagnetisch. Dabei sind die atomaren magnetischen Momente Schicht für Schicht in jeweils entgegengesetzter Richtung orientiert – wodurch das Material als Ganzes nicht magnetisch erscheint. Theoretische Überlegungen deuteten bislang darauf hin, dass die magnetische Ordnung verlorengeht oder eine schwache konventionelle Magnetisierung zeigt, wenn das Material auf eine einzige Atomschicht reduziert wird.

Präzise Messungen an der VEKMAG-Anlage

Doch der Gruppe gelang es nun, das zu widerlegen – durch einen detaillierten Blick auf die magnetischen Eigenschaften des 2D-Materials. Dazu nutzten sie die einzigartigen Möglichkeiten der an der Synchrotron-Strahlungsquelle BESSY II des HZB installierten Vektormagnetanlage VEKMAG. „Die Einrichtung ermöglicht Materialuntersuchungen mit weicher Röntgenstrahlung in einem starken Magnetfeld – und das bei Temperaturen bis nahe dem absoluten Nullpunkt“, sagt Dr. Florin Radu, der Leiter des für die VEKMAG-Anlage verantwortlichen Teams am HZB. „Das macht die Anlage weltweit einzigartig“, ergänzt der Berliner Wissenschaftler. An dieser Anlage konnte das Team aus Halle die Orientierung einzelner magnetischer Momente bestimmen und dabei exakt zwischen Chrom- und Chlor-Atomen unterscheiden.

Die Messungen zeigten, wie sich unterhalb der sogenannten Curie-Temperatur eine ferromagnetische Ordnung in dem zweidimensionalen Werkstoff bildete. „In der monoatomaren Chromchlorid-Schicht fand ein Phasenübergang statt, der für easy-plane-Magneten charakteristisch ist, aber an einem solchen 2D Material zuvor noch nie beobachtet worden war“, berichtet Bedoya-Pinto.

Rückenwind für die Entwicklung der Spintronik

Die Entdeckung bietet nicht nur neue Einsichten in das magnetische Verhalten zweidimensionaler Materialien. „Wir haben damit nun auch eine exzellente Plattform, um eine Vielzahl physikalischer Phänomene zu erforschen, die es nur in zweidimensionalen magnetischen Materialien gibt“, erklärt Bedoya-Pinto: beispielsweise den widerstandslosen Transport von Spins. Sie sind die Grundlage einer neuen Form der Datenverarbeitung, die – anders als die herkömmliche Elektronik – nicht elektrische Ladungen, sondern magnetische Momente nutzt. Die sogenannte Spintronik könnte künftig unter anderem eine deutlich schnellere und energiesparende Speicherung von Daten ermöglichen.

rb

  • Link kopieren

Das könnte Sie auch interessieren

  • BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
    Science Highlight
    21.10.2025
    BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
    Erstmals ist es einem Team an BESSY II gelungen, experimentell eindimensionale elektronische Eigenschaften in einem Material nachzuweisen. Die Proben bestanden aus kurzen Ketten aus Phosphoratomen, die sich auf einem Silbersubstrat selbst organisiert in bestimmten Winkeln bilden. Durch eine raffinierte Auswertung gelang es, die Beiträge von unterschiedlich ausgerichteten Ketten voneinander zu trennen und zu zeigen, dass die elektronischen Eigenschaften tatsächlich einen eindimensionalen Charakter besitzen. Berechnungen zeigten darüber hinaus, dass ein spannender Phasenübergang zu erwarten ist. Während das Material aus einzelnen Ketten halbleitend ist, wäre eine sehr dichte Kettenstruktur metallisch.
  • Ein innerer Kompass für Meereslebewesen im Paläozän
    Science Highlight
    20.10.2025
    Ein innerer Kompass für Meereslebewesen im Paläozän
    Vor Jahrmillionen produzierten einige Meeresorganismen mysteriöse Magnetpartikel von ungewöhnlicher Größe, die heute als Fossilien in Sedimenten zu finden sind. Nun ist es einem internationalen Team gelungen, die magnetischen Domänen auf einem dieser „Riesenmagnetfossilien” mit einer raffinierten Methode an der Diamond-Röntgenquelle zu kartieren. Ihre Analyse zeigt, dass diese Partikel es den Organismen ermöglicht haben könnten, winzige Schwankungen sowohl in der Richtung als auch in der Intensität des Erdmagnetfelds wahrzunehmen. Dadurch konnten sie sich verorten und über den Ozean navigieren. Die neue Methode eignet sich auch, um zu testen, ob bestimmte Eisenoxidpartikel in Marsproben tatsächlich biogenen Ursprungs sind.
  • Was vibrierende Moleküle über die Zellbiologie verraten
    Science Highlight
    16.10.2025
    Was vibrierende Moleküle über die Zellbiologie verraten
    Mit Infrarot-Vibrationsspektroskopie an BESSY II lassen sich hochaufgelöste Karten von Molekülen in lebenden Zellen und Zellorganellen in ihrer natürlichen wässrigen Umgebung erstellen, zeigt eine neue Studie von einem Team aus HZB und Humboldt-Universität zu Berlin. Die Nano-IR-Spektroskopie mit SNOM an der IRIS-Beamline eignet sich, um winzige biologische Proben zu untersuchen und Infrarotbilder der Molekülschwingungen mit Nanometer-Auflösung zu erzeugen. Es ist sogar möglich, 3D-Informationen, also Infrarot-Tomogramme, aufzuzeichnen. Um das Verfahren zu testen, hat das Team Fibroblasten auf einer hochtransparenten SiC-Membran gezüchtet und in vivo untersucht. Die Methode ermöglicht neue Einblicke in die Zellbiologie.