20 Jahre Russisch-Deutsches Gemeinschaftslabor an BESSY II

Zum 20. Jubiläum veranstaltet das Russisch-Deutsche Labor am Speicherring BESSY II für Synchrotronstrahlung in Berlin am 18. und 19. November einen Online-Workshop. Dabei diskutieren Wissenschaftlerinnen und Wissenschaftler über die Zukunftsperspektiven der russisch-deutschen Zusammenarbeit sowie über innovative Projekte und neue Ziele des Labors.

Im Russisch-Deutschen Gemeinschaftslabor haben seit seiner Gründung vor zwei Dekaden zahlreiche Wissenschaftlerinnen und Wissenschaftler aus Russland und Deutschland gearbeitet und seither rund 770 Publikationen veröffentlicht. Die Forschungseinrichtung wird mittlerweile von acht Partnerorganisationen unterstützt – von der Freien Universität Berlin, dem Helmholtz-Zentrum Berlin, der Technischen Universität Dresden und der Technischen Universität Bergakademie Freiberg. Hinzu kommen die Staatliche Universität St. Petersburg, das Ioffe Institut in St. Petersburg sowie das Kurchatov-Institut und das Shubnikov-Institut für Kristallographie in Moskau. Förderung erhält das Labor durch das Bundesministerium für Bildung und Forschung. Messreisen unterstützt das Helmholtz-Zentrum Berlin und das Deutsch-Russische Exzellenz-Zentrum G-RISC, das durch den Deutschen Akademischen Austausch-Dienst (DAAD) mit Mitteln des Auswärtigen Amtes finanziert wird.

Die Wissenschaftlerinnen und Wissenschaftler nutzen den Jubiläumsworkshop, um über aktuelle Highlights aus ihrer Forschung zu diskutieren. So wird es in den Fachvorträgen um den Magnetismus zweidimensionaler Kristalle gehen, also um neuartige Materialien, die die Computerhardware der Zukunft leistungsfähiger und energieeffizienter machen können, sowie um neue Batteriematerialien und die Frage, warum neuartige Materialien für Solarzellen eine unerwartet hohe Effizienz zeigen. „Wie sieht die Zukunft des Russisch-Deutschen Labors aus?“, fragt Eckart Rühl, Professor für Physikalische Chemie an der Freien Universität Berlin und Koordinator des Forschungslabors. Neue Synchrotronstrahlungsquellen seien bereits in Deutschland und Russland in Planung. „BESSY II wird auch in der kommenden Dekade dem Russisch-Deutschen Labor ausgezeichnete Möglichkeiten bieten. Und die geplante Nachfolgerquelle BESSY III wird bisher nicht durchführbare Experimente möglich machen!“, betont Prof. Dr. Jan Lüning, wissenschaftlicher Direktor des Helmholtz-Zentrums Berlin.

Programm des Workshops am 18. und 19. November 2021

Lesen Sie die vollständige Mitteilung hier auf den Webseiten der Freien Universität Berlin

FU Berlin/red.

Das könnte Sie auch interessieren

  • Europäische Pilotlinie für innovative Tandem-Solarzellen
    Nachricht
    23.11.2022
    Europäische Pilotlinie für innovative Tandem-Solarzellen
    PEPPERONI ist ein vierjähriges Forschungs- und Innovationsprojekt, das im Rahmen von Horizon Europe kofinanziert und gemeinsam vom Helmholtz-Zentrum Berlin und Qcells koordiniert wird. Das Projekt wird dazu beitragen, die Markteinführung und Massenproduktion von Perowskit/Silizium-Tandem-Photovoltaik-Technologien voranzubringen.

  • Quanten-Algorithmen sparen Zeit bei der Berechnung von Elektronendynamik
    Science Highlight
    22.11.2022
    Quanten-Algorithmen sparen Zeit bei der Berechnung von Elektronendynamik
    Quantencomputer versprechen erheblich kürzere Rechenzeiten für komplexe Probleme. Aber noch gibt es weltweit nur wenige Quantencomputer mit einer begrenzten Anzahl so genannter Qubits. Quantencomputer-Algorithmen können aber auch auf konventionellen Servern laufen, die einen Quantencomputer simulieren. Ein HZB-Team hat damit nun am Beispiel eines kleinen Moleküls dessen Elektronenorbitale und ihre dynamische Entwicklung nach einer Laserpulsanregung berechnet. Die Methode eignet sich auch, um größere Moleküle zu untersuchen, die mit konventionellen Methoden nicht mehr berechnet werden können.
  • Wie sich Photoelektroden im Kontakt mit Wasser verändern
    Science Highlight
    17.11.2022
    Wie sich Photoelektroden im Kontakt mit Wasser verändern
    Photoelektroden auf der Basis von BiVO4 gelten als Top-Kandidaten für die solare Wasserstofferzeugung. Doch was passiert eigentlich, wenn sie mit Wassermolekülen in Kontakt kommen? Eine Studie im Journal of the American Chemical Society hat diese entscheidende Frage nun teilweise beantwortet: Überschüssige Elektronen aus dotierten Fremdelementen oder Defekten fördern die Dissoziation von Wasser, was wiederum sogenannte Polaronen an der Oberfläche stabilisiert. Dies zeigen Daten aus Experimenten eines HZB-Teams an der Advanced Light Source des Lawrence Berkeley National Laboratory. Die Ergebnisse könnten dazu beitragen, bessere Photoanoden für die grüne Wasserstoffproduktion zu entwickeln.