20 Years Russian-German Joint Laboratory at BESSY II

To mark its 20th anniversary, the Russian-German Laboratory at the BESSY II storage ring for synchrotron radiation in Berlin is organising an online workshop on 18 and 19 November. Scientists will discuss the future perspectives of Russian-German cooperation as well as innovative projects and new goals of the laboratory.

Since its foundation two decades ago, numerous scientists from Russia and Germany have worked at the Russian-German Joint Laboratory and have since published around 770 publications. The research cooperation is now supported by eight partner organisations - Freie Universität Berlin, Helmholtz-Zentrum Berlin, Technische Universität Dresden and Technische Universität Bergakademie Freiberg. They are joined by St. Petersburg State University, the Ioffe Institute in St. Petersburg and the Kurchatov Institute and Shubnikov Institute of Crystallography in Moscow.

The laboratory receives funding from the Federal Ministry of Education and Research. Messreisen supports the HZB and the German-Russian Centre of Excellence G-RISC, which is funded by the German Academic Exchange Service (DAAD) with funds from the Federal Foreign Office.

The researchers will use the anniversary workshop to discuss current highlights from their research. Expert lectures will deal with the magnetism of two-dimensional crystals, i.e. novel materials that can make the computer hardware of the future more powerful and energy-efficient, as well as new battery materials and the question of why novel materials for solar cells show unexpectedly high efficiency. "What does the future hold for the Russian-German Laboratory?" asks Eckart Rühl, Professor of Physical Chemistry at the Free University of Berlin and coordinator of the research laboratory. New synchrotron radiation sources are already being planned in Germany and Russia, he says. "BESSY II will continue to provide excellent opportunities for the Russian-German Laboratory in the coming decade. And the planned successor source BESSY III will make previously unfeasible experiments possible!" emphasises Prof. Dr. Jan Lüning, scientific director of Helmholtz-Zentrum Berlin.

Program of the Workshop on 18 and 19 November 2021

FU Berlin/red.

You might also be interested in

  • European pilot line for innovative photovoltaic technology based on tandem solar cells
    News
    23.11.2022
    European pilot line for innovative photovoltaic technology based on tandem solar cells
    PEPPERONI, a four-year Research and Innovation project co-funded under Horizon Europe and jointly coordinated by Helmholtz-Zentrum Berlin and Qcells, will support Europe in reaching its renewable energy target of climate neutrality by 2050. The project will help advance perovskite/silicon tandem photovoltaics (PV) technology’s journey towards market introduction and mass manufacturing.
  • Quantum algorithms save time in the calculation of electron dynamics
    Science Highlight
    22.11.2022
    Quantum algorithms save time in the calculation of electron dynamics
    Quantum computers promise significantly shorter computing times for complex problems. But there are still only a few quantum computers worldwide with a limited number of so-called qubits. However, quantum computer algorithms can already run on conventional servers that simulate a quantum computer. A team at HZB has succeeded to calculate the electron orbitals and their dynamic development on the example of a small molecule after a laser pulse excitation. In principle, the method is also suitable for investigating larger molecules that cannot be calculated using conventional methods.
  • How photoelectrodes change in contact with water
    Science Highlight
    17.11.2022
    How photoelectrodes change in contact with water
    Photoelectrodes based on BiVO4 are considered top candidates for solar hydrogen production. But what exactly happens when they come into contact with water molecules? A study in the Journal of the American Chemical Society has now partially answered this crucial question:  Excess electrons from dopants or defects aid the dissociation of water which in turn stabilizes so-called polarons at the surface. This is shown by data from experiments conducted at the Advanced Light Source at Lawrence Berkeley National Laboratory. These insights might foster a knowledge-based design of better photoanodes for green hydrogen production.