20 Years Russian-German Joint Laboratory at BESSY II

To mark its 20th anniversary, the Russian-German Laboratory at the BESSY II storage ring for synchrotron radiation in Berlin is organising an online workshop on 18 and 19 November. Scientists will discuss the future perspectives of Russian-German cooperation as well as innovative projects and new goals of the laboratory.

Since its foundation two decades ago, numerous scientists from Russia and Germany have worked at the Russian-German Joint Laboratory and have since published around 770 publications. The research cooperation is now supported by eight partner organisations - Freie Universität Berlin, Helmholtz-Zentrum Berlin, Technische Universität Dresden and Technische Universität Bergakademie Freiberg. They are joined by St. Petersburg State University, the Ioffe Institute in St. Petersburg and the Kurchatov Institute and Shubnikov Institute of Crystallography in Moscow.

The laboratory receives funding from the Federal Ministry of Education and Research. Messreisen supports the HZB and the German-Russian Centre of Excellence G-RISC, which is funded by the German Academic Exchange Service (DAAD) with funds from the Federal Foreign Office.

The researchers will use the anniversary workshop to discuss current highlights from their research. Expert lectures will deal with the magnetism of two-dimensional crystals, i.e. novel materials that can make the computer hardware of the future more powerful and energy-efficient, as well as new battery materials and the question of why novel materials for solar cells show unexpectedly high efficiency. "What does the future hold for the Russian-German Laboratory?" asks Eckart Rühl, Professor of Physical Chemistry at the Free University of Berlin and coordinator of the research laboratory. New synchrotron radiation sources are already being planned in Germany and Russia, he says. "BESSY II will continue to provide excellent opportunities for the Russian-German Laboratory in the coming decade. And the planned successor source BESSY III will make previously unfeasible experiments possible!" emphasises Prof. Dr. Jan Lüning, scientific director of Helmholtz-Zentrum Berlin.

Program of the Workshop on 18 and 19 November 2021

FU Berlin/red.

  • Copy link

You might also be interested in

  • Sodium-ion batteries: New storage mechanism for cathode materials
    Science Highlight
    18.07.2025
    Sodium-ion batteries: New storage mechanism for cathode materials
    Li-ion and Na-ion batteries operate through a process called intercalation, where ions are stored and exchanged between two chemically different electrodes. In contrast, co-intercalation, a process in which both ions and solvent molecules are stored simultaneously, has traditionally been considered undesirable due to its tendency to cause rapid battery failure. Against this traditional view, an international research team led by Philipp Adelhelm has now demonstrated that co-intercalation can be a reversible and fast process for cathode materials in Na-ion batteries. The approach of jointly storing ions and solvents in cathode materials provides a new handle for the designing batteries with high efficiency and fast charging capabilities. The results are published in Nature Materials.
  • 10 million euros in funding for UNITE – Startup Factory Berlin-Brandenburg
    News
    16.07.2025
    10 million euros in funding for UNITE – Startup Factory Berlin-Brandenburg
    UNITE – Startup Factory Berlin-Brandenburg has been recognised by the Federal Ministry for Economic Affairs and Energy as one of ten nationwide flagship projects for science-based start-ups. UNITE is to be established as a central transfer platform for technology-driven spin-offs from science and industry in the capital region. The Helmholtz Centre Berlin will also benefit from this.

  • Helmholtz Doctoral Award for Hanna Trzesniowski
    News
    09.07.2025
    Helmholtz Doctoral Award for Hanna Trzesniowski
    During her doctoral studies at the Helmholtz Centre Berlin, Hanna Trzesniowski conducted research on nickel-based electrocatalysts for water splitting. Her work contributes to a deeper understanding of alkaline water electrolysis and paves the way for the development of more efficient and stable catalysts. On 8 July 2025, she received the Helmholtz Doctoral Prize, which honours the best and most original doctoral theses in the Helmholtz Association.