Innovative Katalysatoren: Ein Überblicksbeitrag

Die Illustration veranschaulicht die Aufspaltung von Wasser in Sauerstoff und Wasserstoff mit Hilfe von innovativen Elektrokatalysatoren. Wasserstoff kann als Brennstoff und chemischer Energiespeicher genutzt werden.

Die Illustration veranschaulicht die Aufspaltung von Wasser in Sauerstoff und Wasserstoff mit Hilfe von innovativen Elektrokatalysatoren. Wasserstoff kann als Brennstoff und chemischer Energiespeicher genutzt werden. © Dr. Ziliang Chen

Grüner Wasserstoff benötigt hocheffiziente (Elektro-)Katalysatoren. Auch für die chemische Industrie, die Düngemittelproduktion und andere Wirtschaftszweige sind Katalysatoren unerlässlich. Neben den Übergangsmetallen sind inzwischen eine Vielzahl anderer metallischer oder nichtmetallischer Elemente in den Fokus der Forschung gerückt. In einem Übersichtsartikel geben Experten des CatLab am HZB und der Technischen Universität Berlin einen Überblick über den aktuellen Wissensstand und einen Ausblick auf zukünftige Forschungsfragen.

Grüner Wasserstoff ist ein wichtiger Baustein in einem klimaneutralen Energiesystem. Er wird durch elektrolytische Spaltung von Wasser mit Wind- oder Sonnenenergie erzeugt und speichert diese Energie in chemischer Form. Doch derzeit ist die Herstellung von grünem Wasserstoff noch nicht wirtschaftlich und effizient genug. Der Schlüssel zur Lösung dieses Problems liegt in der Entwicklung innovativer Elektrokatalysatoren, die nicht nur mit hohem Wirkungsgrad arbeiten, sondern auch langlebig, verfügbar und kostengünstig sein sollten.

Neben den Übergangsmetallen, deren katalytische Eigenschaften bereits gut erforscht sind, sind nun auch Elemente aus den Gruppen der Alkalimetalle, Erdalkalimetalle, Seltenerdmetalle oder Metalloide in den Fokus der Aufmerksamkeit gerückt. Einige Elemente aus diesen Gruppen könnten in Kombination mit Übergangsmetallen die Leistung von Katalysatoren erheblich verbessern und zur Entwicklung von Hochleistungs-Elektrokatalysatoren der nächsten Generation beitragen. Viele der Prozesse, die während der Elektrokatalyse bei der Bildung von Sauerstoff oder Wasserstoff ablaufen, sind jedoch noch nicht im Detail verstanden.

In einem Übersichtsartikel führt nun ein internationales Expertenteam durch dieses spannende Forschungsgebiet und skizziert die nächsten Schritte, die die Katalysatorforschung nehmen könnte. "Dieser Beitrag fasst den aktuellen Wissensstand über unkonventionelle Materialien  zusammen und macht ihn für eine breitere Wissenschaftsgemeinschaft zugänglich. Darüber hinaus beschreibt er ausführlich die Rolle dieser Metalle bei der Elektrokatalyse, sowie die Modifizierungsstrategie, die man in Betracht ziehen könnte, wenn man Elektrokatalysatoren einsetzen will, die nicht auf Edelmetallen basieren. Wir hoffen, mit diesem Übersichtsartikel die Forschung und Entwicklung an innovativen Katalysatormaterialien erheblich zu beschleunigen", betont Dr. Prashanth W. Menezes.

 

Hinweis: Dr. Prashanth W. Menezes ist Leiter der Gruppe Materialchemie für Dünnschichtkatalyse am HZB im CatLab-Projekt und Leiter der Gruppe Anorganische Materialien an der TU Berlin.

Seine Twitterhandle lautet @EnergycatLab

Zu CatLab: Gemeinsam mit dem Fritz-Haber-Institut der Max-Planck-Gesellschaft baut das HZB das Katalyse-Labor CatLab auf, das die Forschung an innovativen Katalysatoren beschleunigen soll.  CatLab wird vom Bundesministerium für Bildung und Forschung gefördert.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Iridiumfreie Katalysatoren für die saure Wasserelektrolyse untersucht
    Science Highlight
    13.08.2025
    Iridiumfreie Katalysatoren für die saure Wasserelektrolyse untersucht
    Wasserstoff wird künftig eine wichtige Rolle spielen, als Brennstoff und als Rohstoff für die Industrie. Um jedoch relevante Mengen an Wasserstoff zu produzieren, muss Wasserelektrolyse im Multi-Gigawatt-Maßstab machbar werden. Ein Engpass sind die benötigten Katalysatoren, insbesondere Iridium ist ein extrem seltenes Element. Eine internationale Kooperation hat daher Iridiumfreie Katalysatoren für die saure Wasserelektrolyse untersucht, die auf dem Element Kobalt basieren. Durch Untersuchungen, unter anderem am LiXEdrom an der Berliner Röntgenquelle BESSY II, konnten sie Prozesse bei der Wasserelektrolyse in einem Kobalt-Eisen-Blei-Oxid-Material als Anode aufklären. Die Studie ist in Nature Energy publiziert.
  • MXene als „Rahmen“ für zweidimensionale Wasserfilme zeigt neue Eigenschaften
    Science Highlight
    13.08.2025
    MXene als „Rahmen“ für zweidimensionale Wasserfilme zeigt neue Eigenschaften
    Ein internationales Team unter Leitung von Dr. Tristan Petit und Prof. Yury Gogotsi hat MXene mit eingeschlossenem Wasser und Ionen an der BESSY II untersucht. Dabei ging das Wasser mit steigender Temperatur vom Zustand als lokalisierte Eiskluster in einen quasi-zweidimensionalen Wasserfilm über. Das Team entdeckte dabei, dass diese strukturellen Veränderungen des eingeschlossenen Wassers im MXene einen reversiblen Phasenübergang bewirken: vom Metall zum Halbleiter. Dies könnte die Entwicklung neuartiger Bauelemente oder Sensoren auf Basis von MXenen ermöglichen.
  • Lithium-Schwefel-Batterien mit wenig Elektrolyt: Problemzonen identifiziert
    Science Highlight
    12.08.2025
    Lithium-Schwefel-Batterien mit wenig Elektrolyt: Problemzonen identifiziert
    Mit einer zerstörungsfreien Methode hat ein Team am HZB erstmals Lithium-Schwefel-Batterien im praktischen Pouchzellenformat untersucht, die mit besonders wenig Elektrolyt-Flüssigkeit auskommen. Mit operando Neutronentomographie konnten sie in Echtzeit visualisieren, wie sich der flüssige Elektrolyt während des Ladens und Entladens über mehrere Schichten verteilt und die Elektroden benetzt. Diese Erkenntnisse liefern wertvolle Einblicke in die Mechanismen, die zum Versagen der Batterie führen können, und sind hilfreich für die Entwicklung kompakter Li-S-Batterien mit hoher Energiedichte.