Tautomere Gemische enträtselt: RIXS an BESSY II liefert klare Aussagen

Das Bild illustriert die experimentelle Methode, mit der hier (als Beispiel) das Keto-Enol-Gleichgewicht untersucht wurde. Die Illustration erscheint auch auf dem aktuellen Cover von “The Journal of Physical Chemistry Letters”.

Das Bild illustriert die experimentelle Methode, mit der hier (als Beispiel) das Keto-Enol-Gleichgewicht untersucht wurde. Die Illustration erscheint auch auf dem aktuellen Cover von “The Journal of Physical Chemistry Letters”. © Martin Künsting / HZB

Ein Team am HZB hat eine Methode entwickelt, um tautomere Gemische zu untersuchen. Mit resonanter inelastischer Röntgenstreuung (RIXS) an BESSY II lassen sich nicht nur die Anteile der jeweiligen Tautomere exakt bestimmen, sondern auch die Eigenschaften jedes Tautomers. Damit liefert die Methode auch detaillierte Informationen über ihre biologische Funktion. In der Studie wurde die Technik auf das Keto-Enol-Gleichgewicht angewendet, das bei vielen biologischen Prozessen eine Rolle spielt. Auf dem Titelblatt weist das "The Journal of Physical Chemistry Letters" auf die Arbeit hin.

Viele (organische) Moleküle liegen als Gemisch zweier fast identischer Moleküle vor, die die gleiche Summenformel haben, sich aber in einem wichtigen Punkt unterscheiden: Ein einzelnes Wasserstoffatom sitzt an einer anderen Position. Die beiden isomeren Formen gehen ineinander über und bilden ein empfindliches Gleichgewicht, ein „tautomeres" Gemisch. Tautomere Gemische spielen in der Biologie eine große Rolle: So sind zum Beispiel viele Aminosäuren tautomere Gemische. Als Bausteine von Proteinen können sie deren Form und Funktion und damit auch ihre biologischen Funktionen in Organismen beeinflussen.

Bisher kaum unterscheidbar

Bislang war es jedoch nicht möglich, die elektronische Struktur solcher tautomeren Gemische gezielt experimentell voneinander zu trennen. Klassische spektroskopische Methoden erfassen nur die Summe der Signale der einzelnen Molekülformen, können aber nicht die Eigenschaften der beiden einzelnen Tautomere im Detail voneinander unterscheiden.

Jetzt an BESSY II: Es klappt

Einem Team um den HZB-Physiker Prof. Alexander Föhlisch ist es nun gelungen, eine Methode bereitzustellen, die genau das ermöglicht: Mit Hilfe der inelastischen Röntgenstreuung (RIXS) und einer eigens dafür entwickelten Methode zur Auswertung der Daten lassen sich die einzelnen Anteile der Tautomere aus den Messdaten eindeutig voneinander unterscheiden.

„Wir können das Signal jedes einzelnen Moleküls in der Mischung experimentell trennen. Dies erlaubt uns einen detaillierten Einblick in ihre Funktionalität und chemischen Eigenschaften", sagt Dr. Vinicíus Vaz Da Cruz, Erstautor der Arbeit und Postdoc in Föhlischs Team. „Wir messen ein reines Spektrum jedes Tautomers und nutzen dabei die Elementspezifität und Ortsselektivität der Methode", erklärt Vaz Da Cruz. Dadurch lassen sich die Komponenten des tautomeren Gemischs vollständig charakterisieren.

Einblicke in biologische Prozesse

In der vorliegenden Studie wurde die Technik auf das prototypische Keto-Enol-Gleichgewicht von 3-Hydroxypyridin in wässriger Lösung angewendet. Die Daten wurden an der EDAX-Terminalstation bei BESSY II gewonnen.

Diese Ergebnisse liefern experimentelle Beweise für Konzepte, die in der Literatur bisher nur theoretisch diskutiert wurden. Sie sind besonders interessant, um wichtige biologische Prozesse wie die Wechselwirkung zwischen Nukleoidbasen der DNA, die metabolische Umwandlung von Fruktose in Glukose oder die Faltung von Proteinen aufzuklären und zu verstehen.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Elektrokatalyse mit doppeltem Nutzen – ein Überblick
    Science Highlight
    31.10.2025
    Elektrokatalyse mit doppeltem Nutzen – ein Überblick
    Hybride Elektrokatalysatoren können beispielsweise gleichzeitig grünen Wasserstoff und wertvolle organische Verbindungen produzieren. Dies verspricht wirtschaftlich rentable Anwendungen. Die komplexen katalytischen Reaktionen, die bei der Herstellung organischer Verbindungen ablaufen, sind jedoch noch nicht vollständig verstanden. Moderne Röntgenmethoden an Synchrotronquellen wie BESSY II ermöglichen es, Katalysatormaterialien und die an ihren Oberflächen ablaufenden Reaktionen in Echtzeit, in situ und unter realen Betriebsbedingungen zu analysieren. Dies liefert Erkenntnisse, die für eine gezielte Optimierung genutzt werden können. Ein Team hat nun in Nature Reviews Chemistry einen Überblick über den aktuellen Wissensstand veröffentlicht.
  • Erfolgreicher Masterabschluss zu IR-Thermografie an Solarfassaden
    Nachricht
    22.10.2025
    Erfolgreicher Masterabschluss zu IR-Thermografie an Solarfassaden
    Wir freuen uns sehr und gratulieren unserer studentischen Mitarbeiterin Luca Raschke zum erfolgreich abgeschlossenen Masterstudium der Regenerativen Energien an der Hochschule für Technik und Wirtschaft Berlin – und das mit Auszeichnung!
  • BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
    Science Highlight
    21.10.2025
    BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
    Erstmals ist es einem Team an BESSY II gelungen, experimentell eindimensionale elektronische Eigenschaften in Phosphor nachzuweisen. Die Proben bestanden aus kurzen Ketten aus Phosphoratomen, die sich auf einem Silbersubstrat selbst organisiert in bestimmten Winkeln bilden. Durch eine raffinierte Auswertung gelang es, die Beiträge von unterschiedlich ausgerichteten Ketten voneinander zu trennen und zu zeigen, dass die elektronischen Eigenschaften tatsächlich einen eindimensionalen Charakter besitzen. Berechnungen zeigten darüber hinaus, dass ein spannender Phasenübergang zu erwarten ist. Während das Material aus einzelnen Ketten halbleitend ist, wäre eine sehr dichte Kettenstruktur metallisch.