Forschende entdecken, warum Sehnen stark wie Drahtseile sind

Unter dem Elektronenmikroskop: Kollagenfaserbündel nach der Mineralisation mit dem Knochenmineral Kalziumphosphat

Unter dem Elektronenmikroskop: Kollagenfaserbündel nach der Mineralisation mit dem Knochenmineral Kalziumphosphat © Max-Planck-Institut für Kolloid- und Grenzflächenforschung

Ein Team am Max-Planck-Institut für Kolloid- und Grenzflächenforschung (MPIKG) hat mithilfe von BESSY II neue Eigenschaften des Kollagens entdeckt: Während der Einlagerung von Mineralen in Kollagenfasern entsteht eine Kontraktionsspannung, die hundertfach stärker ist als die von Muskelkraft. Die Veränderungen der Kollagenstruktur wurden mittels Röntgenbeugung an der Synchrotronsstrahlungsquelle BESSY II in Berlin-Adlershof beobachtet, während die Mineralisation stattfand.

„Dieser universelle Mechanismus der Mineralisation von organischen Fasergeweben könnte auf technische Hybridmaterialien übertragen werden, um dort beispielsweise eine hohe Bruchfestigkeit zu erreichen,“ sagt Prof. Dr. Dr.h.c. Peter Fratzl, Direktor am MPIKG.

Das faserbildende Strukturprotein Kollagen kommt unter anderem in Sehnen, der Haut und Knochen vor.  Aus medizinischer bzw. biologischer Sicht ist es interessant zu verstehen, was beim Prozess der Mineralisation in Knochen passiert. Viele Knochenkrankheiten gehen mit Veränderungen des Mineralgehalts in Knochen und dadurch veränderten Eigenschaften einher.

Lesen Sie die vollständige Presseinformation auf der Webseite des MPIKG.

(red/sz)

  • Link kopieren

Das könnte Sie auch interessieren

  • Helmholtz-Nachwuchsgruppe zu Magnonen
    Nachricht
    24.11.2025
    Helmholtz-Nachwuchsgruppe zu Magnonen
    Dr. Hebatalla Elnaggar baut am HZB eine neue Helmholtz-Nachwuchsgruppe auf. An BESSY II will die Materialforscherin sogenannte Magnonen in magnetischen Perowskit-Dünnschichten untersuchen. Sie hat sich zum Ziel gesetzt, mit ihrer Forschung Grundlagen für eine zukünftige Terahertz-Magnon-Technologie zu legen: Magnonische Bauelemente im Terahertz-Bereich könnten Daten mit einem Bruchteil der Energie verarbeiten, die moderne Halbleiterbauelemente benötigen, und das mit bis zu tausendfacher Geschwindigkeit.

    Dr. Hebatalla Elnaggar will an BESSY II magnetische Perowskit-Dünnschichten untersuchen und damit die Grundlagen für eine künftige Magnonen-Technologie schaffen.

  • Die Zukunft der Korallen – Was Röntgenuntersuchungen zeigen können
    Interview
    12.11.2025
    Die Zukunft der Korallen – Was Röntgenuntersuchungen zeigen können
    In diesem Sommer war es in allen Medien. Angetrieben durch die Klimakrise haben nun auch die Ozeane einen kritischen Punkt überschritten, sie versauern immer mehr. Meeresschnecken zeigen bereits erste Schäden, aber die zunehmende Versauerung könnte auch die kalkhaltigen Skelettstrukturen von Korallen beeinträchtigen. Dabei leiden Korallen außerdem unter marinen Hitzewellen und Verschmutzung, die weltweit zur Korallenbleiche und zum Absterben ganzer Riffe führen. Wie genau wirkt sich die Versauerung auf die Skelettbildung aus?

    Die Meeresbiologin Prof. Dr. Tali Mass von der Universität Haifa, Israel, ist Expertin für Steinkorallen. Zusammen mit Prof. Dr. Paul Zaslansky, Experte für Röntgenbildgebung an der Charité Berlin, untersuchte sie an BESSY II die Skelettbildung bei Babykorallen, die unter verschiedenen pH-Bedingungen aufgezogen wurden. Antonia Rötger befragte die beiden Experten online zu ihrer aktuellen Studie und der Zukunft der Korallenriffe. 

  • Energie von Ladungsträgerpaaren in Kuprat-Verbindungen
    Science Highlight
    05.11.2025
    Energie von Ladungsträgerpaaren in Kuprat-Verbindungen
    Noch immer ist die Hochtemperatursupraleitung nicht vollständig verstanden. Nun hat ein internationales Forschungsteam an BESSY II die Energie von Ladungsträgerpaaren in undotiertem La₂CuO₄ vermessen. Die Messungen zeigten, dass die Wechselwirkungsenergien in den potenziell supraleitenden Kupferoxid-Schichten deutlich geringer sind als in den isolierenden Lanthanoxid-Schichten. Die Ergebnisse tragen zum besseren Verständnis der Hochtemperatur-Supraleitung bei und könnten auch für die Erforschung anderer funktionaler Materialien relevant sein.