Jan Lüning leitet HZB-Institut für Elektronische Struktur Dynamik

© HG Medien

Das zum 1. Mai neu gegründete HZB-Institut für Elektronische Struktur Dynamik entwickelt experimentelle Techniken und Infrastrukturen, um die Dynamik elementarer mikroskopischer Prozesse in neuartigen Materialsystemen zu untersuchen. Auf Basis dieser Erkenntnisse lassen sich funktionale Materialien mit besonderen Eigenschaften für nachhaltige Technologien gezielt optimieren.

Prof. Dr. Jan Lüning ist ein international anerkannter Experte für die Forschung mit Synchrotronstrahlung. Vor seinem Wechsel an das HZB in 2018 war er Professor an der Sorbonne Universität in Paris und arbeitete am französischen Synchrotron SOLEIL.

Zum Institut gehören drei Fachgruppen: Die Gruppe um Dr. Ulrich Schade betreibt das Infrarot-Strahlrohr IRIS an der Synchrotronstrahlungsquelle BESSY II und erforscht molekulare Prozesse in neuartigen funktionalen Materialien, die zum Beispiel die Umwandlung von Energie oder die katalytische Wasserspaltung ermöglichen.

Die Gruppe „Ultra-Kurzzeit Laser-Spektroskopie“ (Leitung Dr. Iain Wilkinson) arbeitet in den Laserlaboren ULLAS und LIDUX und untersucht die Dynamik von Reaktionen in wässrigen Lösungen und an wässrigen Grenzflächen auf ultra-kurzen Zeitskalen.

Die dritte Gruppe um Dr. Christian Schüssler-Langeheine und Dr. Niko Pontius betreibt die Femtoslicing-Facility an BESSY II und forscht an Materialien mit komplexen Phasenübergängen, die das Potential haben, elektronische und magnetische Bauteile kleiner, schneller und energieeffizienter zu machen.

Die Forschungsaktivitäten des Instituts sind in der Programmorientierten Förderung (POF IV) der Helmholtz-Gemeinschaft im Forschungsbereich Materie angesiedelt.

red.

  • Link kopieren

Das könnte Sie auch interessieren

  • Ernst-Eckhard-Koch-Preis und Innovationspreis Synchrotronstrahlung 2025
    Nachricht
    05.12.2025
    Ernst-Eckhard-Koch-Preis und Innovationspreis Synchrotronstrahlung 2025
    Der Freundeskreis des HZB zeichnete auf dem 27. Nutzertreffen BESSY@HZB die Dissertation von Dr. Enggar Pramanto Wibowo (Friedrich-Alexander-Universität Erlangen-Nürnberg) aus.
    Darüber hinaus wurde der Europäische Innovationspreis Synchrotronstrahlung 2025 an Prof. Tim Salditt (Georg-August-Universität Göttingen) sowie an die Professoren Danny D. Jonigk und Maximilian Ackermann (beide, Universitätsklinikum der RWTH Aachen) verliehen. 
  • Gute Aussichten für Zinn-Perowskit-Solarzellen
    Science Highlight
    03.12.2025
    Gute Aussichten für Zinn-Perowskit-Solarzellen
    Perowskit-Solarzellen gelten weithin als die Photovoltaik-Technologie der nächsten Generation. Allerdings sind Perowskit-Halbleiter langfristig noch nicht stabil genug für den breiten kommerziellen Einsatz. Ein Grund dafür sind wandernde Ionen, die mit der Zeit dazu führen, dass das Halbleitermaterial degradiert. Ein Team des HZB und der Universität Potsdam hat nun die Ionendichte in vier verschiedenen Perowskit-Halbleitern untersucht und dabei erhebliche Unterschiede festgestellt. Eine besonders geringe Ionendichte wiesen Zinn-Perowskit-Halbleiter auf, die mit einem alternativen Lösungsmittel hergestellt wurden – hier betrug die Ionendichte nur ein Zehntel im Vergleich zu Blei-Perowskit-Halbleitern. Damit könnten Perowskite auf Zinnbasis ein besonders großes Potenzial zur Herstellung von umweltfreundlichen und besonders stabilen Solarzellen besitzen.
  • Synchrotron-strahlungsquellen: Werkzeugkästen für Quantentechnologien
    Science Highlight
    01.12.2025
    Synchrotron-strahlungsquellen: Werkzeugkästen für Quantentechnologien
    Synchrotronstrahlungsquellen erzeugen hochbrillante Lichtpulse, von Infrarot bis zu harter Röntgenstrahlung, mit denen sich tiefe Einblicke in komplexe Materialien gewinnen lassen. Ein internationales Team hat nun im Fachjournal Advanced Functional Materials einen Überblick über Synchrotronmethoden für die Weiterentwicklung von Quantentechnologien veröffentlicht: Anhand konkreter Beispiele zeigen sie, wie diese einzigartigen Werkzeuge dazu beitragen können, das Potenzial von Quantentechnologien wie z. B. Quantencomputing zu erschließen, Produktionsbarrieren zu überwinden und den Weg für zukünftige Durchbrüche zu ebnen.