Jan Lüning heads HZB Institute for Electronic Structure Dynamics
The HZB Institute for Electronic Structure Dynamics, newly founded on 1 May, develops experimental techniques and infrastructures to investigate the dynamics of elementary microscopic processes in novel material systems. This will help to optimise functional materials for sustainable technologies.
Prof. Dr. Jan Lüning is an internationally recognised expert in research with synchrotron radiation. Before joining HZB in 2018, he was a professor at Sorbonne University in Paris and worked at the French synchrotron SOLEIL.
Three groups belong to the institute: Dr Ulrich Schade's group operates the IRIS infrared beamline at the BESSY II synchrotron radiation source. He examines molecular processes in novel functional materials that enable, for example, energy conversion or catalytic water splitting.
The group "Ultra-Short-Time Laser Spectroscopy" led by Dr. Iain Wilkinson works in the laser laboratories ULLAS and LIDUX and investigates the dynamics of reactions in aqueous solutions and at aqueous interfaces on ultra-short time scales.
The third group, led by Dr. Christian Schüssler-Langeheine and Dr. Niko Pontius, operates the Femtoslicing Facility at BESSY II and conducts research on materials with complex phase transitions that have the potential to make electronic and magnetic devices smaller, faster and more energy efficient.
The institute's research activities are part of the Helmholtz Association's Programme-Oriented Funding (POF IV) in the Research Field Matter.
red.
https://www.helmholtz-berlin.de/pubbin/news_seite?nid=23708;sprache=en
- Copy link
-
Saskia Vormfelde will be the new Administrative Director at HZB
The successful science manager moves from Freiburg to Berlin on 1 September 2025.
-
BESSY II: Insight into ultrafast spin processes with femtoslicing
An international team has succeeded at BESSY II for the first time to elucidate how ultrafast spin-polarised current pulses can be characterised by measuring the ultrafast demagnetisation in a magnetic layer system within the first hundreds of femtoseconds. The findings are useful for the development of spintronic devices that enable faster and more energy-efficient information processing and storage. The collaboration involved teams from the University of Strasbourg, HZB, Uppsala University and several other universities.
-
Battery research: visualisation of aging processes operando
Lithium button cells with electrodes made of nickel-manganese-cobalt oxides (NMC) are very powerful. Unfortunately, their capacity decreases over time. Now, for the first time, a team has used a non-destructive method to observe how the elemental composition of the individual layers in a button cell changes during charging cycles. The study, now published in the journal Small, involved teams from the Physikalisch-Technische Bundesanstalt (PTB), the University of Münster, researchers from the SyncLab research group at HZB and the BLiX laboratory at the Technical University of Berlin. Measurements were carried out in the BLiX laboratory and at the BESSY II synchrotron radiation source.