How electron spin coupling affects catalytic oxygen activation

A team at the EPR4Energy joint lab of HZB and MPI CEC has developed a new THz EPR spectroscopy method to study the catalytic activation of molecular oxygen by copper complexes.

A team at the EPR4Energy joint lab of HZB and MPI CEC has developed a new THz EPR spectroscopy method to study the catalytic activation of molecular oxygen by copper complexes. © T. Lohmiller/HZB

A team at the EPR4Energy joint lab of HZB and MPI CEC has developed a new THz EPR spectroscopy method to study the catalytic activation of molecular oxygen by copper complexes. The method allows insights into previously inaccessible spin-spin interactions and the function of novel catalytic and magnetic materials.

 

Molecular oxygen (O2) is a preferred oxidant in green chemistry. However, activation of O2 and control of its reactivity requires precise adjustment of the spin states in the reactive intermediates. In nature, this is achieved by metalloenzymes that bind O2 at iron or copper ions, and spin-flip processes are enabled through metal-mediated spin-orbit couplings allowing for mixing of states. In the case of type III dicopper metalloproteins involved in oxygen transport and oxygenation of phenolic substrates, little was known about the pathway leading to a dicopper peroxo key species with a stabilized singlet ground state after triplet oxygen binding.

Through a sophisticated ligand design, the research group led by Prof. Franc Meyer at the University of Göttingen has now succeeded in isolating a series of model complexes that mimic the initial stage of oxygen binding at dicopper sites and exhibit a triplet ground state. Researchers from the EPR4Energy joint lab of HZB and MPI CEC complemented this breakthrough in chemical synthesis with a new approach of THz-EPR spectroscopy. This method, developed in Alexander Schnegg's group at MPI CEC, was applied for the first time to study the function-determining antisymmetric exchange in coupled dicopper(II) complexes.

The new method allowed for detection of the entirety of spin state transitions in the system, which leads to propose antisymmetric exchange as an efficient mixing mechanism for the triplet-to-singlet intersystem crossing in biorelevant peroxodicopper(II) intermediates. Thomas Lohmiller, one of the first authors of the study, explains, "In addition to the knowledge gained about this important system, our method opens up the possibility of studying previously inaccessible spin-spin interactions in a variety of novel catalytic and magnetic materials."

CEC/A. Schnegg

  • Copy link

You might also be interested in

  • Porous Radical Organic framework improves lithium-sulphur batteries
    Science Highlight
    15.09.2025
    Porous Radical Organic framework improves lithium-sulphur batteries
    A team led by Prof. Yan Lu, HZB, and Prof. Arne Thomas, Technical University of Berlin, has developed a material that enhances the capacity and stability of lithium-sulphur batteries. The material is based on polymers that form a framework with open pores (known as radical-cationic covalent organic frameworks or COFs). Catalytically accelerated reactions take place in these pores, firmly trapping polysulphides, which would shorten the battery life. Some of the experimental analyses were conducted at the BAMline at BESSY II.
  • Metallic nanocatalysts: what really happens during catalysis
    Science Highlight
    10.09.2025
    Metallic nanocatalysts: what really happens during catalysis
    Using a combination of spectromicroscopy at BESSY II and microscopic analyses at DESY's NanoLab, a team has gained new insights into the chemical behaviour of nanocatalysts during catalysis. The nanoparticles consisted of a platinum core with a rhodium shell. This configuration allows a better understanding of structural changes in, for example, rhodium-platinum catalysts for emission control. The results show that under typical catalytic conditions, some of the rhodium in the shell can diffuse into the interior of the nanoparticles. However, most of it remains on the surface and oxidises. This process is strongly dependent on the surface orientation of the nanoparticle facets.
  • KlarText Prize for Hanna Trzesniowski
    News
    08.09.2025
    KlarText Prize for Hanna Trzesniowski
    The chemist has been awarded the prestigious KlarText Prize for Science Communication by the Klaus Tschira Foundation.