How electron spin coupling affects catalytic oxygen activation

A team at the EPR4Energy joint lab of HZB and MPI CEC has developed a new THz EPR spectroscopy method to study the catalytic activation of molecular oxygen by copper complexes.

A team at the EPR4Energy joint lab of HZB and MPI CEC has developed a new THz EPR spectroscopy method to study the catalytic activation of molecular oxygen by copper complexes. © T. Lohmiller/HZB

A team at the EPR4Energy joint lab of HZB and MPI CEC has developed a new THz EPR spectroscopy method to study the catalytic activation of molecular oxygen by copper complexes. The method allows insights into previously inaccessible spin-spin interactions and the function of novel catalytic and magnetic materials.

 

Molecular oxygen (O2) is a preferred oxidant in green chemistry. However, activation of O2 and control of its reactivity requires precise adjustment of the spin states in the reactive intermediates. In nature, this is achieved by metalloenzymes that bind O2 at iron or copper ions, and spin-flip processes are enabled through metal-mediated spin-orbit couplings allowing for mixing of states. In the case of type III dicopper metalloproteins involved in oxygen transport and oxygenation of phenolic substrates, little was known about the pathway leading to a dicopper peroxo key species with a stabilized singlet ground state after triplet oxygen binding.

Through a sophisticated ligand design, the research group led by Prof. Franc Meyer at the University of Göttingen has now succeeded in isolating a series of model complexes that mimic the initial stage of oxygen binding at dicopper sites and exhibit a triplet ground state. Researchers from the EPR4Energy joint lab of HZB and MPI CEC complemented this breakthrough in chemical synthesis with a new approach of THz-EPR spectroscopy. This method, developed in Alexander Schnegg's group at MPI CEC, was applied for the first time to study the function-determining antisymmetric exchange in coupled dicopper(II) complexes.

The new method allowed for detection of the entirety of spin state transitions in the system, which leads to propose antisymmetric exchange as an efficient mixing mechanism for the triplet-to-singlet intersystem crossing in biorelevant peroxodicopper(II) intermediates. Thomas Lohmiller, one of the first authors of the study, explains, "In addition to the knowledge gained about this important system, our method opens up the possibility of studying previously inaccessible spin-spin interactions in a variety of novel catalytic and magnetic materials."

CEC/A. Schnegg

  • Copy link

You might also be interested in

  • Key technology for a future without fossil fuels
    Interview
    21.08.2025
    Key technology for a future without fossil fuels
    In June and July 2025, catalyst researcher Nico Fischer spent some time at HZB. It was his sabbatical, he was relieved of his duties as Director of the Catalysis Institute in Cape Town for several months and was able to focus on research only. His institute is collaborating with HZB on two projects that aim to develop environmentally friendly alternatives using innovative catalyst technologies. The questions were asked by Antonia Rötger, HZB.
  • 5000th patient treated with protons for eye tumours
    News
    19.08.2025
    5000th patient treated with protons for eye tumours
    For more than 25 years, Charité – Universitätsmedizin Berlin and the Helmholtz-Zentrum Berlin (HZB) have been jointly offering proton radiation therapy for eye tumours. The HZB operates a proton accelerator in Berlin-Wannsee for this purpose, while Charité provides medical care for the patients. The 5000th patient was treated at the beginning of August.
  • MXene as a frame for 2D water films shows new properties
    Science Highlight
    13.08.2025
    MXene as a frame for 2D water films shows new properties
    An international team led by Dr. Tristan Petit and Prof. Yury Gogotsi has investigated MXene with confined water and ions at BESSY II. In the MXene samples, a transition between localised ice clusters to quasi-two-dimensional water films was identified by increasing temperature. The team also discovered that the intercalated water structure drives a reversible transition from metallic to semiconducting behaviour of the MXene film. This could enable the development of novel devices or sensors based on MXenes.