Atomare Verschiebungen in Hochentropie-Legierungen untersucht

Die Gitterplätze der Superzelle werden nach dem Zufallsprinzip mit den fünf Elementen gefüllt; in der Ausgangskonfiguration liegen alle Schichten (xy-Ebene) genau übereinander. In der endgültigen Konfiguration sind die Elemente mehr oder weniger verschoben, so dass auch die unteren Ebenen sichtbar werden. Diese Verschiebungen wurden durch die Analysen der experimentellen Spektren mit Reverse-Monte-Carlo-Simulationen ermittelt.

Die Gitterplätze der Superzelle werden nach dem Zufallsprinzip mit den fünf Elementen gefüllt; in der Ausgangskonfiguration liegen alle Schichten (xy-Ebene) genau übereinander. In der endgültigen Konfiguration sind die Elemente mehr oder weniger verschoben, so dass auch die unteren Ebenen sichtbar werden. Diese Verschiebungen wurden durch die Analysen der experimentellen Spektren mit Reverse-Monte-Carlo-Simulationen ermittelt. © A.Kuzmin / University of Latvia and A. Smekhova / HZB

Hochentropie-Legierungen aus 3d-Metallen haben faszinierende Eigenschaften, die Anwendungen im Energiesektor in Aussicht stellen. Ein internationales Team hat nun lokale Verschiebungen auf atomarer Ebene in einer hochentropischen Cantor-Legierung aus Chrom, Mangan, Eisen, Kobalt und Nickel untersucht. Mit spektroskopischen Analysen an BESSY II und statistischen Simulationen konnten sie das Verständnis dieser Materialgruppe deutlich erweitern.

Hochentropie-Legierungen sind für ganz unterschiedliche Anwendungen als Energiematerialien im Gespräch: Einige Materialien aus dieser Gruppe können Wasserstoff speichern, andere eignen sich für die edelmetallfreie Elektrokatalyse, als Superkondensatoren oder zur Abschirmung von Strahlung.

Die mikroskopische Struktur von hochentropischen Legierungen ist sehr vielfältig und veränderbar: Dabei beeinflussen die lokale Anordnung der Elemente und verschiedene Sekundärphasen die makroskopischen Eigenschaften wie Härte, Korrosionsbeständigkeit und auch Magnetismus. Die sogenannte Cantor-Legierung aus Chrom, Mangan, Eisen, Kobalt und Nickel in einem äquimolaren Verhältnis gilt als geeignetes Modellsystem für die gesamte Klasse dieser Werkstoffe.

Wo sitzen welche Elemente?

Wissenschaftlerinnen und Wissenschaftler der Bundesanstalt für Materialforschung (BAM, Berlin), der Universität von Lettland in Riga, der Ruhr-Universität Bochum und des HZB haben nun die lokale Struktur dieses Modellsystems genauer untersucht. Mit Röntgenabsorptionsspektroskopie (EXAFS) an BESSY II kombiniert mit statistischen Berechnungen und der Reverse-Monte-Carlo-Methode konnten sie jedes einzelne Element und dessen Verschiebungen von den idealen Gitterpositionen für dieses System nahezu unverfälscht verfolgen.

Besonderheiten von Chrom

Auf diese Weise deckten sie Besonderheiten in der lokalen Umgebung jedes Elements auf: Obwohl alle fünf Elemente der Legierung an den Knotenpunkten des flächenzentrierten kubischen Gitters verteilt sind und sehr enge statistisch gemittelte interatomare Abstände (2,54 - 2,55 Å) zu ihren nächsten Nachbarn haben, zeigten sich größere strukturelle Relaxationen nur bei den Chromatomen. Außerdem fanden sich keine Hinweise auf sekundäre Phasen auf atomarer Ebene. Die makroskopischen magnetischen Eigenschaften, die mit konventioneller Magnetometrie am HZB CoreLab für Quantenmaterialien untersucht wurden, konnten mit den Informationen über das Element Chrom korreliert werden.

"Unsere Ergebnisse beschreiben die Anordnung einzelner Atome sehr präzise und zeigen, wie die komplexe magnetische Ordnung entstehen kann", erklärt HZB-Physikerin Dr. Alevtina Smekhova, die die Experimente am HZB betreut hat.

 

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Grüne Herstellung von Hybridmaterialien als hochempfindliche Röntgendetektoren
    Science Highlight
    08.05.2025
    Grüne Herstellung von Hybridmaterialien als hochempfindliche Röntgendetektoren
    Neue organisch-anorganische Hybridmaterialien auf Basis von Wismut sind hervorragend als Röntgendetektoren geeignet, sie sind deutlich empfindlicher als handelsübliche Röntgendetektoren und langzeitstabil. Darüber hinaus können sie ohne Lösungsmittel durch Kugelmahlen hergestellt werden, einem umweltfreundlichen Syntheseverfahren, das auch in der Industrie genutzt wird. Empfindlichere Detektoren würden die Strahlenbelastung bei Röntgenuntersuchungen erheblich reduzieren.

  • Energiespeicher: BAM, HZB und HU Berlin planen gemeinsames Berlin Battery Lab
    Nachricht
    07.05.2025
    Energiespeicher: BAM, HZB und HU Berlin planen gemeinsames Berlin Battery Lab
    Die Bundesanstalt für Materialforschung und -prüfung (BAM), das Helmholtz-Zentrum Berlin (HZB) und die Humboldt-Universität zu Berlin (HU Berlin) haben ein Memorandum of Understanding (MoU) zur Gründung des Berlin Battery Lab unterzeichnet. Das Labor wird die Expertise der drei Institutionen bündeln, um die Entwicklung nachhaltiger Batterietechnologien voranzutreiben. Die gemeinsame Forschungsinfrastruktur soll auch der Industrie für wegweisende Projekte in diesem Bereich offenstehen.
  • BESSY II: Einblick in ultraschnelle Spinprozesse mit Femtoslicing
    Science Highlight
    05.05.2025
    BESSY II: Einblick in ultraschnelle Spinprozesse mit Femtoslicing
    Einem internationalen Team ist es an BESSY II erstmals gelungen, einen besonders schnellen Prozess im Inneren eines magnetischen Schichtsystems, eines Spinventils, aufzuklären: An der Femtoslicing-Beamline von BESSY II konnten sie die ultraschnelle Entmagnetisierung durch spinpolarisierte Stromimpulse beobachten. Die Ergebnisse helfen bei der Entwicklung von spintronischen Bauelementen für die schnellere und energieeffizientere Verarbeitung und Speicherung von Information. An der Zusammenarbeit waren Teams der Universität Straßburg, des HZB, der Universität Uppsala sowie weiterer Universitäten beteiligt.