Umweltauswirkungen von Perowskit-Silizium-PV-Modulen geringer als bei Silizium allein

Oxford PV stellte für die Studie die Perowskit-auf-Silizium-Module und Prozessdaten aus seiner Serienfertigung in Deutschland zur Verfügung.

Oxford PV stellte für die Studie die Perowskit-auf-Silizium-Module und Prozessdaten aus seiner Serienfertigung in Deutschland zur Verfügung. © Oxford PV

Eine Studie hat erstmals die Umweltauswirkungen von industriell hergestellten Perowskit-auf-Silizium-Tandem-Solarmodulen über den gesamten Lebenszyklus bewertet. Dabei stellte Oxford PV die Tandem-Solarmodule sowie Prozessdaten aus seiner Serienfertigung in Deutschland zur Verfügung. Das Ergebnis: Die innovativen Tandem-Solarmodule sind über ihre Lebensdauer sogar noch umweltfreundlicher als herkömmliche Silizium-Heterojunktion-Module. Die Studie wurde im Fachjournal Sustainable Energy & Fuels veröffentlicht.

Photovoltaik boomt. Während im Jahr 2002 etwa 2 Gigawatt PV-Kapazität installiert war, stieg die Kapazität in 2022 auf mehr als 1 TW (1000 GW). Um die Klimazeile zu erreichen, soll Photovoltaik auch in den kommenden Jahrzehnten weiter ausgebaut werden. Tandem-Solarzellen, die Perowskit-Schichten mit Silizium kombinieren, erzeugen auf gleicher Fläche deutlich mehr Strom als die herkömmliche Siliziumtechnologie. Dabei wird eine Perowskit-Zelle auf eine Siliziumzelle aufgebracht. Diese Tandemtechnologie hat bei der solaren Umwandlungseffizienz Weltrekordwerte erreicht, der jetzt bei über 31 % liegt.

Erstmals industriell hergestellte Module über den Lebenszyklus bewertet

Doch auch bei PV-Solarmodulen ist es nötig, die Umweltauswirkungen über ihren gesamten Lebenszyklus zu betrachten, um sie weiter zu minimieren. Die Lebenszyklusbewertung von Perowskit-auf-Silizium-PV-Modulen stützte sich jedoch bisher stark auf Daten von Labor- und Testeinrichtungen und nicht von Herstellern. Nun haben Forschungsteams erstmals die Umweltleistung von industriell hergestellten Perowskit-Silizium-PV-Modulen bewertet.

"Wir haben festgestellt, dass Perowskit-auf-Silizium-PV-Module über eine Lebensdauer von 25 Jahren umweltfreundlicher sind als herkömmliche Silizium-Heterojunction-Module", sagt Bernd Stannowski vom Helmholtz-Zentrum Berlin, Ko-Autor der Studie.

Dabei bewerteten sie eine Reihe von Kategorien, darunter Wasserverbrauch, Toxizität für Mensch und Gewässer, Metallverbrauch und Material- und Energieaufwand für den gesamten Lebenszyklus eines Moduls von Anfang bis Ende: d. h. den gesamten Material- und Energieaufwand für die Waferproduktion, die Herstellung der Perowskit-Zelle und die Modulproduktion.

Tandemmodule: mehr Strom pro Fläche

Im Anschluss wurden die Umweltauswirkungen des Tandemmoduls gegen die während seiner Lebensdauer erzeugte Elektrizität abgewogen.

"Wir fanden heraus, dass das Perowskit-auf-Silizium-Modul die Umwelt um 6 bis 18 % weniger belastet als ein Silizium-Modul, wenn man die zusätzliche Energie berücksichtigt, die während der 25-jährigen Lebensdauer des Tandem-Moduls erzeugt wird", sagt Ko-Autor Martin Roffeis von der Technischen Universität Berlin.

Das in der Studie verwendete Tandemmodul würde in 22 Jahren die gleiche Menge an Strom erzeugen wie das referenzierte Silizium-Heteroübergangsmodul in 25 Jahren.

"Der höhere Wirkungsgrad des Perowskit-Silizium-Tandemmoduls kompensiert die Umweltbelastung, die durch das zusätzliche Perowskit-Material und die Prozesse entsteht", erklärt Jan-Christoph Goldschmidt, der an der Studie während seiner Zeit am Fraunhofer-Institut für Solare Energiesysteme beteiligt war und inzwischen an der Philipps-Universität Marburg forscht.

Die Studie zeigt auch, dass die Umweltverträglichkeit eines Perowskit-Silizium-Moduls in hohem Maße vom Energieverbrauch bei der Herstellung der Siliziumwafer beeinflusst wird.

Oxford PV stellte für die Studie die Perowskit-auf-Silizium-Module und Prozessdaten aus seiner Serienfertigung in Deutschland zur Verfügung.

Nachhaltigkeit gewinnt an Bedeutung

"Die Nachhaltigkeit von Solarmaterialien und Lieferketten gewinnt zunehmend an Bedeutung, da die Welt Solaranlagen im Multi-Terawatt-Bereich einsetzt", sagt Laura Miranda Pérez, Leiterin der Materialforschung bei Oxford PV. "Wir hoffen, dass unser Beitrag der Industrie und der wissenschaftlichen Gemeinschaft helfen wird, das Design, die Produktion und das End-of-Life-Management von Tandem-Technologien zu verbessern und so ihre Einführung zu unterstützen."

OxfordPV / red.

  • Link kopieren

Das könnte Sie auch interessieren

  • BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
    Science Highlight
    21.10.2025
    BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
    Erstmals ist es einem Team an BESSY II gelungen, experimentell eindimensionale elektronische Eigenschaften in einem Material nachzuweisen. Die Proben bestanden aus kurzen Ketten aus Phosphoratomen, die sich auf einem Silbersubstrat selbst organisiert in bestimmten Winkeln bilden. Durch eine raffinierte Auswertung gelang es, die Beiträge von unterschiedlich ausgerichteten Ketten voneinander zu trennen und zu zeigen, dass die elektronischen Eigenschaften tatsächlich einen eindimensionalen Charakter besitzen. Berechnungen zeigten darüber hinaus, dass ein spannender Phasenübergang zu erwarten ist. Während das Material aus einzelnen Ketten halbleitend ist, wäre eine sehr dichte Kettenstruktur metallisch.
  • Ein innerer Kompass für Meereslebewesen im Paläozän
    Science Highlight
    20.10.2025
    Ein innerer Kompass für Meereslebewesen im Paläozän
    Vor Jahrmillionen produzierten einige Meeresorganismen mysteriöse Magnetpartikel von ungewöhnlicher Größe, die heute als Fossilien in Sedimenten zu finden sind. Nun ist es einem internationalen Team gelungen, die magnetischen Domänen auf einem dieser „Riesenmagnetfossilien” mit einer raffinierten Methode an der Diamond-Röntgenquelle zu kartieren. Ihre Analyse zeigt, dass diese Partikel es den Organismen ermöglicht haben könnten, winzige Schwankungen sowohl in der Richtung als auch in der Intensität des Erdmagnetfelds wahrzunehmen. Dadurch konnten sie sich verorten und über den Ozean navigieren. Die neue Methode eignet sich auch, um zu testen, ob bestimmte Eisenoxidpartikel in Marsproben tatsächlich biogenen Ursprungs sind.
  • Was vibrierende Moleküle über die Zellbiologie verraten
    Science Highlight
    16.10.2025
    Was vibrierende Moleküle über die Zellbiologie verraten
    Mit Infrarot-Vibrationsspektroskopie an BESSY II lassen sich hochaufgelöste Karten von Molekülen in lebenden Zellen und Zellorganellen in ihrer natürlichen wässrigen Umgebung erstellen, zeigt eine neue Studie von einem Team aus HZB und Humboldt-Universität zu Berlin. Die Nano-IR-Spektroskopie mit SNOM an der IRIS-Beamline eignet sich, um winzige biologische Proben zu untersuchen und Infrarotbilder der Molekülschwingungen mit Nanometer-Auflösung zu erzeugen. Es ist sogar möglich, 3D-Informationen, also Infrarot-Tomogramme, aufzuzeichnen. Um das Verfahren zu testen, hat das Team Fibroblasten auf einer hochtransparenten SiC-Membran gezüchtet und in vivo untersucht. Die Methode ermöglicht neue Einblicke in die Zellbiologie.