Umweltauswirkungen von Perowskit-Silizium-PV-Modulen geringer als bei Silizium allein

Oxford PV stellte für die Studie die Perowskit-auf-Silizium-Module und Prozessdaten aus seiner Serienfertigung in Deutschland zur Verfügung.

Oxford PV stellte für die Studie die Perowskit-auf-Silizium-Module und Prozessdaten aus seiner Serienfertigung in Deutschland zur Verfügung. © Oxford PV

Eine Studie hat erstmals die Umweltauswirkungen von industriell hergestellten Perowskit-auf-Silizium-Tandem-Solarmodulen über den gesamten Lebenszyklus bewertet. Dabei stellte Oxford PV die Tandem-Solarmodule sowie Prozessdaten aus seiner Serienfertigung in Deutschland zur Verfügung. Das Ergebnis: Die innovativen Tandem-Solarmodule sind über ihre Lebensdauer sogar noch umweltfreundlicher als herkömmliche Silizium-Heterojunktion-Module. Die Studie wurde im Fachjournal Sustainable Energy & Fuels veröffentlicht.

Photovoltaik boomt. Während im Jahr 2002 etwa 2 Gigawatt PV-Kapazität installiert war, stieg die Kapazität in 2022 auf mehr als 1 TW (1000 GW). Um die Klimazeile zu erreichen, soll Photovoltaik auch in den kommenden Jahrzehnten weiter ausgebaut werden. Tandem-Solarzellen, die Perowskit-Schichten mit Silizium kombinieren, erzeugen auf gleicher Fläche deutlich mehr Strom als die herkömmliche Siliziumtechnologie. Dabei wird eine Perowskit-Zelle auf eine Siliziumzelle aufgebracht. Diese Tandemtechnologie hat bei der solaren Umwandlungseffizienz Weltrekordwerte erreicht, der jetzt bei über 31 % liegt.

Erstmals industriell hergestellte Module über den Lebenszyklus bewertet

Doch auch bei PV-Solarmodulen ist es nötig, die Umweltauswirkungen über ihren gesamten Lebenszyklus zu betrachten, um sie weiter zu minimieren. Die Lebenszyklusbewertung von Perowskit-auf-Silizium-PV-Modulen stützte sich jedoch bisher stark auf Daten von Labor- und Testeinrichtungen und nicht von Herstellern. Nun haben Forschungsteams erstmals die Umweltleistung von industriell hergestellten Perowskit-Silizium-PV-Modulen bewertet.

"Wir haben festgestellt, dass Perowskit-auf-Silizium-PV-Module über eine Lebensdauer von 25 Jahren umweltfreundlicher sind als herkömmliche Silizium-Heterojunction-Module", sagt Bernd Stannowski vom Helmholtz-Zentrum Berlin, Ko-Autor der Studie.

Dabei bewerteten sie eine Reihe von Kategorien, darunter Wasserverbrauch, Toxizität für Mensch und Gewässer, Metallverbrauch und Material- und Energieaufwand für den gesamten Lebenszyklus eines Moduls von Anfang bis Ende: d. h. den gesamten Material- und Energieaufwand für die Waferproduktion, die Herstellung der Perowskit-Zelle und die Modulproduktion.

Tandemmodule: mehr Strom pro Fläche

Im Anschluss wurden die Umweltauswirkungen des Tandemmoduls gegen die während seiner Lebensdauer erzeugte Elektrizität abgewogen.

"Wir fanden heraus, dass das Perowskit-auf-Silizium-Modul die Umwelt um 6 bis 18 % weniger belastet als ein Silizium-Modul, wenn man die zusätzliche Energie berücksichtigt, die während der 25-jährigen Lebensdauer des Tandem-Moduls erzeugt wird", sagt Ko-Autor Martin Roffeis von der Technischen Universität Berlin.

Das in der Studie verwendete Tandemmodul würde in 22 Jahren die gleiche Menge an Strom erzeugen wie das referenzierte Silizium-Heteroübergangsmodul in 25 Jahren.

"Der höhere Wirkungsgrad des Perowskit-Silizium-Tandemmoduls kompensiert die Umweltbelastung, die durch das zusätzliche Perowskit-Material und die Prozesse entsteht", erklärt Jan-Christoph Goldschmidt, der an der Studie während seiner Zeit am Fraunhofer-Institut für Solare Energiesysteme beteiligt war und inzwischen an der Philipps-Universität Marburg forscht.

Die Studie zeigt auch, dass die Umweltverträglichkeit eines Perowskit-Silizium-Moduls in hohem Maße vom Energieverbrauch bei der Herstellung der Siliziumwafer beeinflusst wird.

Oxford PV stellte für die Studie die Perowskit-auf-Silizium-Module und Prozessdaten aus seiner Serienfertigung in Deutschland zur Verfügung.

Nachhaltigkeit gewinnt an Bedeutung

"Die Nachhaltigkeit von Solarmaterialien und Lieferketten gewinnt zunehmend an Bedeutung, da die Welt Solaranlagen im Multi-Terawatt-Bereich einsetzt", sagt Laura Miranda Pérez, Leiterin der Materialforschung bei Oxford PV. "Wir hoffen, dass unser Beitrag der Industrie und der wissenschaftlichen Gemeinschaft helfen wird, das Design, die Produktion und das End-of-Life-Management von Tandem-Technologien zu verbessern und so ihre Einführung zu unterstützen."

OxfordPV / red.

  • Link kopieren

Das könnte Sie auch interessieren

  • Batterieforschung: Alterungsprozesse operando sichtbar gemacht
    Science Highlight
    29.04.2025
    Batterieforschung: Alterungsprozesse operando sichtbar gemacht
    Lithium-Knopfzellen mit Elektroden aus Nickel-Mangan-Kobalt-Oxiden (NMC) sind sehr leistungsfähig. Doch mit der Zeit lässt die Kapazität leider nach. Nun konnte ein Team erstmals mit einem zerstörungsfreien Verfahren beobachten, wie sich die Elementzusammensetzung der einzelnen Schichten in einer Knopfzelle während der Ladezyklen verändert. An der Studie, die nun im Fachjournal Small erschienen ist, waren Teams der Physikalisch-Technischen Bundesanstalt (PTB), der Universität Münster sowie Forschende der Forschungsgruppe SyncLab des HZB und des Applikationslabors BLiX der Technischen Universität Berlin beteiligt. Ein Teil der Messungen fand mit einem Instrument im BLiX-Labor statt, ein weiterer Teil an der Synchrotronquelle BESSY II.
  • Neues Instrument bei BESSY II: Die OÆSE-Endstation in EMIL
    Science Highlight
    23.04.2025
    Neues Instrument bei BESSY II: Die OÆSE-Endstation in EMIL
    An BESSY II steht nun ein neues Instrument zur Untersuchung von Katalysatormaterialien, Batterieelektroden und anderen Energiesystemen zur Verfügung: die Operando Absorption and Emission Spectroscopy on EMIL (OÆSE) Endstation im Energy Materials In-situ Laboratory Berlin (EMIL). Ein Team um Raul Garcia-Diez und Marcus Bär hat die Leistungsfähigkeit des Instruments an elektrochemisch abgeschiedenem Kupfer demonstriert.
  • Grüner Wasserstoff: Käfigstruktur verwandelt sich in effizienten Katalysator
    Science Highlight
    17.04.2025
    Grüner Wasserstoff: Käfigstruktur verwandelt sich in effizienten Katalysator
    Clathrate zeichnen sich durch eine komplexe Käfigstruktur aus, die auch Platz für Gast-Ionen bietet. Nun hat ein Team erstmals untersucht, wie gut sich Clathrate als Katalysatoren für die elektrolytische Wasserstoffproduktion eignen. Das Ergebnis: Effizienz und Robustheit sind sogar besser als bei den aktuell genutzten Nickel-basierten Katalysatoren. Dafür fanden sie auch eine Begründung. Messungen an BESSY II zeigten, dass sich die Proben während der katalytischen Reaktion strukturell verändern: Aus der dreidimensionalen Käfigstruktur bilden sich ultradünne Nanoblätter, die maximalen Kontakt zu aktiven Katalysezentren ermöglichen. Die Studie ist in „Angewandte Chemie“ publiziert.