Young investigator research group on electrocatalysis at HZB
Dr. Michelle Browne (here at her graduation ceremony in Dublin) starts now a Young Investigator Group at HZB. © privat
Dr. Michelle Browne establishes her own young investigator group at the HZB . Starting in August, the group is co-funded by the Helmholtz Association for the next five years. The electrochemist from Ireland concentrates on electrolytically active novel material systems and wants to develop next-generation electrocatalysts, for example hydrogen production. At HZB she will find the perfect environment to conduct her research.
Michelle Browne received her PhD in 2016 from the University of Dublin, Trinity College Dublin (TCD), Ireland. She held research fellow positions at universities in Belfast, Prague, and Dublin. She has received prestigious fellowships and awards, for example the Marie Skłodowska-Curie Individual Fellowship, L’Oreal UNESCO Rising Talent UK & Ireland Fellowship and the Clara Immerwahr Award.
Her research focuses on the synthesis of novel catalytically active materials such as transition metal oxides and MXenes. She aims to characterise and optimise these material systems in order to develop next-generation electrolyzer materials that can also be upscaled for industrial use, in order to produce green hydrogen.
Electrocatalysis: Synthesis to Devices
Michelle Browne's research project fits perfectly with the research projects already underway at the Institute for Solar Fuels and within CatLab. "At HZB, I have a wide variety of investigation methods at my disposal, from scanning electron microscopy to the various instruments at BESSY II, which also allow operando analyses," she says.
Michelle Browne's affiliation with the Technische Universität Berlin in the Institute of Chemistry is planned. Starting in the fall, Browne will recruit postdocs and PhD students to join her team.
arö
https://www.helmholtz-berlin.de/pubbin/news_seite?nid=23928;sprache=en
- Copy link
-
Battery research: visualisation of aging processes operando
Lithium button cells with electrodes made of nickel-manganese-cobalt oxides (NMC) are very powerful. Unfortunately, their capacity decreases over time. Now, for the first time, a team has used a non-destructive method to observe how the elemental composition of the individual layers in a button cell changes during charging cycles. The study, now published in the journal Small, involved teams from the Physikalisch-Technische Bundesanstalt (PTB), the University of Münster, researchers from the SyncLab research group at HZB and the BLiX laboratory at the Technical University of Berlin. Measurements were carried out in the BLiX laboratory and at the BESSY II synchrotron radiation source.
-
New instrument at BESSY II: The OÆSE endstation in EMIL
A new instrument is now available at BESSY II for investigating catalyst materials, battery electrodes and other energy devices under operating conditions: the Operando Absorption and Emission Spectroscopy on EMIL (OÆSE) endstation in the Energy Materials In-situ Laboratory Berlin (EMIL). A team led by Raul Garcia-Diez and Marcus Bär showcases the instrument’s capabilities via a proof-of-concept study on electrodeposited copper.
-
Green hydrogen: A cage structured material transforms into a performant catalyst
Clathrates are characterised by a complex cage structure that provides space for guest ions too. Now, for the first time, a team has investigated the suitability of clathrates as catalysts for electrolytic hydrogen production with impressive results: the clathrate sample was even more efficient and robust than currently used nickel-based catalysts. They also found a reason for this enhanced performance. Measurements at BESSY II showed that the clathrates undergo structural changes during the catalytic reaction: the three-dimensional cage structure decays into ultra-thin nanosheets that allow maximum contact with active catalytic centres. The study has been published in the journal ‘Angewandte Chemie’.