Rhomboedrischer Graphit als Modell für Quantenmagnetismus

Rhomboedrischer Graphit besteht aus leicht gegeneinander verschobenen Graphen-Schichten. 

Rhomboedrischer Graphit besteht aus leicht gegeneinander verschobenen Graphen-Schichten.  © 10.1126/sciadv.abo6879

<p class="Default">Auf der Oberfl&auml;che von rhomboedrischem Graphit k&ouml;nnen sich Elektronen in 2D frei bewegen. Visualisiert wird dies hier durch die roten Kugeln um die Kohlenstoff-Atome der obersten Graphen-Lage.

Auf der Oberfläche von rhomboedrischem Graphit können sich Elektronen in 2D frei bewegen. Visualisiert wird dies hier durch die roten Kugeln um die Kohlenstoff-Atome der obersten Graphen-Lage.

Graphen ist ein äußerst spannendes Material. Nun zeigt eine Graphen-Variante ein weiteres Talent: Rhomboedrischer Graphit aus mehreren, leicht gegeneinander versetzten Schichten könnte die verborgene Physik in Quantenmagneten aufklären.

Graphen-Materialien bestehen nur aus Kohlenstoffatomen, die Grundform ist eine einlagige Bienenwabenstruktur. Aber es gibt einige Varianten mit erstaunlich vielseitigen Eigenschaften. So können beispielsweise Stapel von Graphenschichten* eine Vielzahl von Quasiteilchen und Vielteilchenphänomenen beherbergen: Von Dirac-Fermionen in Einzelschichten bis hin zu exotischer Supraleitfähigkeit in verdrillten Doppelschichten.

Freie Ladungsträger an der Oberfläche

In rhomboedrischem Graphit (RG) sind die wabenförmigen Schichten mit einem bestimmten Versatz übereinander gestapelt. Dies führt zu einer besonderen elektronischen Struktur mit sehr flachen Bändern an der Oberfläche. Wie in einem topologischen Isolator bewegen sich die Ladungsträger nur an der Oberfläche frei.

Letztes Jahr wurde gezeigt, dass Dreischichten aus RG auch Ferromagnetismus und unkonventionelle Supraleitung aufweisen. Und: Die Stärke der Wechselwirkungen nimmt mit der Anzahl der Schichten zu.

Experimentelle und theoretische Analysen

Ein Team vom Zentrum für Energieforschung, Budapest, Ungarn und am HZB hat nun erstmals die Oberfläche von mehrschichtigen RG-Proben unter einem Rastertunnelmikroskop untersucht. Sie konnten die Bandstruktur und die elektronischen Eigenschaften präzise abbilden und entdeckten unerwartet reiche Vielteilchen-Grundzustände. Zudem arbeiteten sie mit verschiedenen Modellen der Quantenphysik, um verborgene Prozesse und Wechselwirkungen in den Proben zu verstehen. 

Bezug zu Quantenmagnetismus

"Das Interessante an rhomboedrischem Graphit ist, dass dieses Material auch sogenannte Spin-Kanten-Zustände aufweist, die in Quantenmagneten vorkommen. Die Arbeit verbindet somit zwei wichtige Bereiche der kondensierten Materie: Graphen-basierte Systeme und Quantenmagnete", sagt Dr. Imre Hagymási, Erstautor der Arbeit, die jetzt in Science Advances erschienen ist.

Ein flexibles Modellsystem

Die Studie bietet neue Einblicke in das Zusammenspiel von Topologie und Vielteilchenphysik und damit die Chance, die Physik in Quantenmagneten zu erhellen. Derzeit sind selbst einfache Quantenmagnete noch nicht vollständig verstanden. Quantenmagnete spielen aber auch bei hochaktuellen Themen wie den Hochtemperatur-Kuprat-Supraleitern eine Rolle. RG bietet eine alternative Plattform für die Untersuchung solcher korrelierter Phänomene. Eine Plattform, die durch elektrische Felder, Dehnung usw. einstellbar ist und im Vergleich zu anderen korrelierten Materialien eine sehr einfache Kristallstruktur aufweist. "Diese Ergebnisse sind wirklich hilfreich für das gesamte Forschungsgebiet", sagt Hagymási.

*Anmerkung:  Graphen besteht eigentlich nur aus einer einzigen Lage von vernetzten Kohlenstoff-Atomen , mehrere Lagen solcher Graphen-Schichten werden als Graphit bezeichnet.

 

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Lithium-Schwefel-Batterien mit wenig Elektrolyt: Problemzonen identifiziert
    Science Highlight
    12.08.2025
    Lithium-Schwefel-Batterien mit wenig Elektrolyt: Problemzonen identifiziert
    Mit einer zerstörungsfreien Methode hat ein Team am HZB erstmals Lithium-Schwefel-Batterien im praktischen Pouchzellenformat untersucht, die mit besonders wenig Elektrolyt-Flüssigkeit auskommen. Mit operando Neutronentomographie konnten sie in Echtzeit visualisieren, wie sich der flüssige Elektrolyt während des Ladens und Entladens über mehrere Schichten verteilt und die Elektroden benetzt. Diese Erkenntnisse liefern wertvolle Einblicke in die Mechanismen, die zum Versagen der Batterie führen können, und sind hilfreich für die Entwicklung kompakter Li-S-Batterien mit hoher Energiedichte.
  • Selbst organisierte Monolage verbessert auch bleifreie Perowskit-Solarzellen
    Science Highlight
    04.08.2025
    Selbst organisierte Monolage verbessert auch bleifreie Perowskit-Solarzellen
    Zinn-Perowskit-Solarzellen sind nicht nur ungiftig, sondern auch potenziell stabiler als bleihaltige Perowskit-Solarzellen. Allerdings sind sie auch deutlich weniger effizient. Nun gelang einem internationalen Team eine deutliche Verbesserung:  Das Team identifizierte chemische Verbindungen, die von selbst eine molekulare Schicht bilden, welche sehr gut zur Gitterstruktur von Zinn-Perowskiten passt. Auf dieser Monolage lässt sich Zinn-Perowskit mit hervorragender optoelektronischer Qualität aufwachsen.
  • Schriftrollen aus buddhistischem Schrein an BESSY II virtuell entrollt
    Science Highlight
    23.07.2025
    Schriftrollen aus buddhistischem Schrein an BESSY II virtuell entrollt
    In der mongolischen Sammlung des Ethnologischen Museums der Staatlichen Museen zu Berlin befindet sich ein einzigartiger Gungervaa-Schrein. Der Schrein enthält auch drei kleine Röllchen aus eng gewickelten langen Streifen, die in Seide gewickelt und verklebt sind. Ein Team am HZB konnte die Schrift auf den Streifen teilweise sichtbar machen, ohne die Röllchen durch Aufwickeln zu beschädigen. Mit 3D-Röntgentomographie erstellten sie eine Datenkopie des Röllchens und verwendeten im Anschluss ein mathematisches Verfahren, um den Streifen virtuell zu entrollen. Das Verfahren wird auch in der Batterieforschung angewandt.