LEAPS: Photonenquellen für die Bewältigung gesellschaftlicher Krisen

Mehr als 180 Teilnehmer:innen aus Forschung, Politikj und Industrie reisten an das Paul Scherrer Institut, um an der LEAPS-Versammlung teilzunehmen.

Mehr als 180 Teilnehmer:innen aus Forschung, Politikj und Industrie reisten an das Paul Scherrer Institut, um an der LEAPS-Versammlung teilzunehmen. © Markus Fischer/PSI

Vor dem Hintergrund der Energiekrise kamen rund 180 Menschen aus Forschung und Politik am Paul Scherrer Institut PSI in der Schweiz zusammen, um eine Vision für europäische beschleunigerbasierte Photonenquellen zu entwickeln und gesellschaftliche Herausforderungen gemeinsam anzugehen. Die Tagung fand vom 26.- 28. Oktober 2022 statt.

 

"LEAPS-Einrichtungen befinden sich in der einzigartigen Lage, sich gleichzeitig als große Energieverbraucher anpassen zu müssen und ein integraler Bestandteil der Lösung zu sein." So Leonid Rivkin vom Paul Scherrer Institut PSI, Schweiz, Vorsitzender der League of European Accelerator-based Photon Sources (LEAPS). In seiner Rede auf der 5. LEAPS-Plenarsitzung erklärte Rivkin, dass die geplante Aufrüstung führender europäischer Forschungsinfrastrukturen dazu beitragen wird, das Gleichgewicht positiv zu verändern und mehr Röntgenstrahlen für mehr Wissenschaft bei geringerem Energieverbrauch bereitzustellen.

Die aktuelle Energiekrise war ein wichtiges Thema auf der 5. LEAPS-Plenartagung, die vom 26. bis 28. Oktober 2022 im Paul-Scherrer-Institut stattfand. Zu den rund 180 Teilnehmer:innen gehörten auch Direktorinnen und Direktoren der 19 europäischen beschleunigerbasierten Photonenquellen sowie Vertreter der Europäischen Kommission.

Lesen Sie weiter auf der LEAPS-Webseite>

PSI

  • Link kopieren

Das könnte Sie auch interessieren

  • Iridiumfreie Katalysatoren für die saure Wasserelektrolyse untersucht
    Science Highlight
    13.08.2025
    Iridiumfreie Katalysatoren für die saure Wasserelektrolyse untersucht
    Wasserstoff wird künftig eine wichtige Rolle spielen, als Brennstoff und als Rohstoff für die Industrie. Um jedoch relevante Mengen an Wasserstoff zu produzieren, muss Wasserelektrolyse im Multi-Gigawatt-Maßstab machbar werden. Ein Engpass sind die benötigten Katalysatoren, insbesondere Iridium ist ein extrem seltenes Element. Eine internationale Kooperation hat daher Iridiumfreie Katalysatoren für die saure Wasserelektrolyse untersucht, die auf dem Element Kobalt basieren. Durch Untersuchungen, unter anderem am LiXEdrom an der Berliner Röntgenquelle BESSY II, konnten sie Prozesse bei der Wasserelektrolyse in einem Kobalt-Eisen-Blei-Oxid-Material als Anode aufklären. Die Studie ist in Nature Energy publiziert.
  • Selbstorganisierte Monolage verbessert auch bleifreie Perowskit-Solarzellen
    Science Highlight
    04.08.2025
    Selbstorganisierte Monolage verbessert auch bleifreie Perowskit-Solarzellen
    Zinn-Perowskit-Solarzellen sind nicht nur ungiftig, sondern auch potenziell stabiler als bleihaltige Perowskit-Solarzellen. Allerdings sind sie auch deutlich weniger effizient. Nun gelang einem internationalen Team eine deutliche Verbesserung:  Das Team identifizierte chemische Verbindungen, die von selbst eine molekulare Schicht bilden, welche sehr gut zur Gitterstruktur von Zinn-Perowskiten passt. Auf dieser Monolage lässt sich Zinn-Perowskit mit hervorragender optoelektronischer Qualität aufwachsen.
  • Schriftrollen aus buddhistischem Schrein an BESSY II virtuell entrollt
    Science Highlight
    23.07.2025
    Schriftrollen aus buddhistischem Schrein an BESSY II virtuell entrollt
    In der mongolischen Sammlung des Ethnologischen Museums der Staatlichen Museen zu Berlin befindet sich ein einzigartiger Gungervaa-Schrein. Der Schrein enthält auch drei kleine Röllchen aus eng gewickelten langen Streifen, die in Seide gewickelt und verklebt sind. Ein Team am HZB konnte die Schrift auf den Streifen teilweise sichtbar machen, ohne die Röllchen durch Aufwickeln zu beschädigen. Mit 3D-Röntgentomographie erstellten sie eine Datenkopie des Röllchens und verwendeten im Anschluss ein mathematisches Verfahren, um den Streifen virtuell zu entrollen. Das Verfahren wird auch in der Batterieforschung angewandt.