BESSY II: Einfluss von Protonen auf Wassermoleküle

An BESSY II konnten die spektralen Fingerabdr&uuml;cke von Wassermolek&uuml;le untersucht werden. Das Ergebnis: die elektronische Struktur der drei innersten Wassermolek&uuml;le in einem H<sub>7</sub>O<sub>3</sub><sup>+</sup>-Komplex wird durch das Proton drastisch ver&auml;ndert. Dar&uuml;ber hinaus ver&auml;ndert sich auch die erste Hydrath&uuml;lle aus f&uuml;nf weiteren Wassermolek&uuml;len, die das Proton &uuml;ber sein langreichweitiges elektrisches Feld wahrnimmt.

An BESSY II konnten die spektralen Fingerabdrücke von Wassermoleküle untersucht werden. Das Ergebnis: die elektronische Struktur der drei innersten Wassermoleküle in einem H7O3+-Komplex wird durch das Proton drastisch verändert. Darüber hinaus verändert sich auch die erste Hydrathülle aus fünf weiteren Wassermolekülen, die das Proton über sein langreichweitiges elektrisches Feld wahrnimmt. © MBI

Wie Wasserstoff-Ionen oder Protonen mit ihrer wässrigen Umgebung wechselwirken, hat große Praxisrelevanz, ob in der Technologie von Brennstoffzellen oder in den Lebenswissenschaften. Nun hat ein großes internationales Konsortium an der Röntgenquelle BESSY II diese Frage experimentell im Detail untersucht und neue Effekte entdeckt. So verändert die Anwesenheit eines Protons die elektronische Struktur der drei innersten Wassermoleküle, wirkt sich aber außerdem auch noch darüber hinaus über ein langreichweitiges Feld auf eine Hydrathülle aus fünf weiteren Wassermolekülen aus.

Überschüssige Protonen in Wasser sind komplexe Quantenobjekte mit starken Wechselwirkungen mit dem dynamischen Wasserstoffbrückenbindungsnetz der Flüssigkeit. Diese Wechselwirkungen sind überraschend schwer zu untersuchen. Dabei spielt die so genannte Protonenhydratisierung eine zentrale Rolle beim Energietransport in Wasserstoffbrennstoffzellen und bei der Signalübertragung in Transmembranproteinen. Während die Geometrien und Stöchiometrien sowohl in Experimenten als auch in der Theorie umfassend untersucht wurden, ist die elektronische Struktur dieser hydratisierten Protonenkomplexe nach wie vor ein Rätsel.

Elektronische Struktur von Protonen in Lösung

Eine große Kooperation aus Gruppen des Max-Born-Instituts, der Universität Hamburg, der Universität Stockholm, der Ben-Gurion-Universität und der Universität Uppsala hat nun neue Erkenntnisse über die elektronische Struktur hydratisierter Protonenkomplexe in Lösung gewonnen.

Wechselwirkungen mit kurzer und längerer Reichweite

Mit Hilfe der neuartigen Flatjet-Technologie führten sie an BESSY II röntgenspektroskopische Messungen durch und kombinierten sie mit Infrarotspektralanalyse und Berechnungen. Dadurch ließen sich zwei wesentliche Effekte unterscheiden: Lokale Orbital-Wechselwirkungen bestimmen die kovalente Bindung zwischen dem Proton und benachbarten Wassermolekülen, während Orbital-Energie-Verschiebungen die Stärke des ausgedehnten elektrischen Feldes des Protons messen. Die Ergebnisse legen eine allgemeine Hierarchie für die Protonenhydratation nahe: Das Proton interagiert mit drei Wassermolekülen und bildet einen H7O3+-Komplex. Die Hydratschale dieses Komplexes wird durch das elektrische Feld der positiven Ladung des Protons beeinflusst.

Mögliche Anwendungen

Die neuen Forschungserkenntnisse haben direkte Auswirkungen auf das Verständnis der Protonenhydratation von Protonen in wässriger Lösung über Protonenkomplexe in Brennstoffzellen bis hin zur Wasserstruktur-Hydratationstaschen von Protonenkanälen in Transmembranproteinen.

Eine längere Meldung dazu können Sie auf der Seite des Max-Born-Instituts lesen>

 

MBI/arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Energie von Ladungsträgerpaaren in Kuprat-Verbindungen
    Science Highlight
    05.11.2025
    Energie von Ladungsträgerpaaren in Kuprat-Verbindungen
    Noch immer ist die Hochtemperatursupraleitung nicht vollständig verstanden. Nun hat ein internationales Forschungsteam an BESSY II die Energie von Ladungsträgerpaaren in undotiertem La₂CuO₄ vermessen. Die Messungen zeigten, dass die Wechselwirkungsenergien in den potenziell supraleitenden Kupferoxid-Schichten deutlich geringer sind als in den isolierenden Lanthanoxid-Schichten. Die Ergebnisse tragen zum besseren Verständnis der Hochtemperatur-Supraleitung bei und könnten auch für die Erforschung anderer funktionaler Materialien relevant sein.
  • Elektrokatalyse mit doppeltem Nutzen – ein Überblick
    Science Highlight
    31.10.2025
    Elektrokatalyse mit doppeltem Nutzen – ein Überblick
    Hybride Elektrokatalysatoren können beispielsweise gleichzeitig grünen Wasserstoff und wertvolle organische Verbindungen produzieren. Dies verspricht wirtschaftlich rentable Anwendungen. Die komplexen katalytischen Reaktionen, die bei der Herstellung organischer Verbindungen ablaufen, sind jedoch noch nicht vollständig verstanden. Moderne Röntgenmethoden an Synchrotronquellen wie BESSY II ermöglichen es, Katalysatormaterialien und die an ihren Oberflächen ablaufenden Reaktionen in Echtzeit, in situ und unter realen Betriebsbedingungen zu analysieren. Dies liefert Erkenntnisse, die für eine gezielte Optimierung genutzt werden können. Ein Team hat nun in Nature Reviews Chemistry einen Überblick über den aktuellen Wissensstand veröffentlicht.
  • BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
    Science Highlight
    21.10.2025
    BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
    Erstmals ist es einem Team an BESSY II gelungen, experimentell eindimensionale elektronische Eigenschaften in Phosphor nachzuweisen. Die Proben bestanden aus kurzen Ketten aus Phosphoratomen, die sich auf einem Silbersubstrat selbst organisiert in bestimmten Winkeln bilden. Durch eine raffinierte Auswertung gelang es, die Beiträge von unterschiedlich ausgerichteten Ketten voneinander zu trennen und zu zeigen, dass die elektronischen Eigenschaften tatsächlich einen eindimensionalen Charakter besitzen. Berechnungen zeigten darüber hinaus, dass ein spannender Phasenübergang zu erwarten ist. Während das Material aus einzelnen Ketten halbleitend ist, wäre eine sehr dichte Kettenstruktur metallisch.