Wie sich Photoelektroden im Kontakt mit Wasser verändern

An der Wismut-Vanadat-Oberfläche lagern sich Wassermoleküle an, die dann aufgespalten werden können. Die überschüssigen Elektronen lokalisieren sich als Polaronen an Vanadium-Stellen (gelbe und blaue Wolken).

An der Wismut-Vanadat-Oberfläche lagern sich Wassermoleküle an, die dann aufgespalten werden können. Die überschüssigen Elektronen lokalisieren sich als Polaronen an Vanadium-Stellen (gelbe und blaue Wolken). © HZB / J. Am. Chem. Soc. 2022

Die Valenzbandzust&auml;nde (x-Achse in eV) in Mo-dotiertem BiVO<sub>4</sub> als Funktion der Photonenenergie (y-Achse). Die Pr&auml;senz von kleiner Polaronen l&auml;sst sich aus dem schwach gr&uuml;nen Punkt bei ca. 2 eV ableiten.

Die Valenzbandzustände (x-Achse in eV) in Mo-dotiertem BiVO4 als Funktion der Photonenenergie (y-Achse). Die Präsenz von kleiner Polaronen lässt sich aus dem schwach grünen Punkt bei ca. 2 eV ableiten. © HZB / J. Am. Chem. Soc. 2022

Photoelektroden auf der Basis von BiVO4 gelten als Top-Kandidaten für die solare Wasserstofferzeugung. Doch was passiert eigentlich, wenn sie mit Wassermolekülen in Kontakt kommen? Eine Studie im Journal of the American Chemical Society hat diese entscheidende Frage nun teilweise beantwortet: Überschüssige Elektronen aus dotierten Fremdelementen oder Defekten fördern die Dissoziation von Wasser, was wiederum sogenannte Polaronen an der Oberfläche stabilisiert. Dies zeigen Daten aus Experimenten eines HZB-Teams an der Advanced Light Source des Lawrence Berkeley National Laboratory. Die Ergebnisse könnten dazu beitragen, bessere Photoanoden für die grüne Wasserstoffproduktion zu entwickeln.

 

Jedes grüne Blatt ist in der Lage, Sonnenenergie in chemische Energie umzuwandeln und diese in chemischen Verbindungen zu speichern. Ein wichtiger Teilprozess der Photosynthese kann jedoch bereits technisch nachgeahmt werden - die solare Wasserstoffproduktion: Das Sonnenlicht erzeugt in einer Photoelektrode einen Strom, der zur Spaltung von Wassermolekülen genutzt werden kann. Dabei entsteht Wasserstoff, ein vielseitiger Brennstoff: Wasserstoff speichert die Sonnenenergie in chemischer Form und kann diese Energie bei Bedarf wieder abgeben.

Photoelektroden als Multitalente

Am HZB-Institut für Solare Brennstoffe arbeiten mehrere Arbeitsgruppen an Photoelektroden aus Halbleitermaterialien. Das Besondere: Diese Materialien bleiben auch in wässrigen Lösungen stabil, sie wandeln Sonnenlicht in elektrischen Strom um und wirken gleichzeitig als Katalysatoren und beschleunigen die Aufspaltung von Wasser. Zu den besten Kandidaten für kostengünstige und effiziente Photoelektroden zählt Bismutvanadat (BiVO4).

Was ändert sich im Kontakt mit Wasser?

"Grundsätzlich wissen wir, dass sich die chemische Zusammensetzung der Oberfläche ändert, wenn man Bismutvanadat in eine wässrige Lösung eintaucht“, sagt Dr. David Starr. Und Dr. Marco Favaro fügt an: „Obwohl es sehr viele Studien zu BiVO4 gibt, war bisher nicht klar, welche Auswirkungen dies auf die elektronischen Eigenschaften der Oberfläche hat, sobald sie mit den Wassermolekülen in Kontakt kommen." Dieser Frage sind sie nun nachgegangen.

Dotierte Einkristalle in Wasserdampf

Sie untersuchten Einkristalle von mit Molybdän dotiertem BiVO4 unter Wasserdampf mit resonanter Photoemissionsspektroskopie an der Advanced Light Source am Lawrence Berkeley National Laboratory. Ein Team um Giulia Galli von der University of Chicago führte anschließend Dichtefunktionaltheorieberechnungen durch, um die  Beiträge von einzelnen Elemente und Elektronenorbitalen zu den elektronischen Zuständen voneinander zu trennen.

Polaronen an Oberflächen

"Durch die In-situ-Resonanz-Photoemission konnten wir verstehen, wie sich die elektronischen Eigenschaften unserer BiVO4-Kristalle durch die Wasseradsorption verändert haben", sagt Favaro. Die Kombination von Messungen und Berechnungen zeigte, dass sich aufgrund von überschüssiger Ladung, die entweder durch Dotierung oder Defekte auf bestimmten Oberflächen des Kristalls entsteht, so genannte Polaronen bilden: elektrisch negativ geladene, lokalisierte Zustände, an die sich Wassermoleküle leicht anlagern und dann dissoziieren können. Dadurch bilden sich Hydroxylgruppen, die dazu beitragen, weitere Polaronen zu stabilisieren. "Die überschüssigen Elektronen werden als Polaronen an VO4-Einheiten auf der Oberfläche lokalisiert", fasst Starr die Ergebnisse zusammen.

Photoanoden optimieren

"Was wir noch nicht sicher beurteilen können, ist, welche Rolle die Polaronen beim Ladungstransfer spielen. Ob sie diesen fördern und damit die Effizienz erhöhen oder im Gegenteil ein Hindernis darstellen, müssen wir noch herausfinden", räumt der Forscher ein.

Die Ergebnisse liefern Einblicke in Prozesse, die die chemische Zusammensetzung und elektronische Struktur der Oberfläche verändern. Diese Prozesse besser zu verstehen, hilft bei der Entwicklung von effizienten und langlebigen Photoanoden für die grüne Wasserstoffproduktion.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • KI-Einsatz in der Chemie: Studie zeigt Stärken und Schwächen
    Nachricht
    04.06.2025
    KI-Einsatz in der Chemie: Studie zeigt Stärken und Schwächen
    Wie gut ist künstliche Intelligenz im Vergleich zu menschlichen Fachleuten? Ein Forschungsteam des HIPOLE Jena hat diese Frage im Bereich der Chemie untersucht: Mithilfe eines neu entwickelten Prüfverfahrens namens „ChemBench“ verglichen die Forschenden die Leistung moderner Sprachmodelle wie GPT-4 mit der von erfahrenen Chemikerinnen und Chemikern. 

  • TH Wildau und Helmholtz-Zentrum Berlin besiegeln umfassende Kooperation
    Nachricht
    30.05.2025
    TH Wildau und Helmholtz-Zentrum Berlin besiegeln umfassende Kooperation
    Am 21. Mai 2025 unterzeichneten die Technische Hochschule Wildau (TH Wildau) und das Helmholtz-Zentrum Berlin einen umfassenden Kooperationsvertrag. Ziel ist es, die Vernetzung und Zusammenarbeit insbesondere in der Grundlagenforschung weiter zu fördern, die wissenschaftliche Exzellenz beider Partner zu steigern und Kompetenznetzwerke in Forschung, Lehre sowie der Ausbildung des wissenschaftlichen Nachwuchses zu entwickeln.

  • Grüner Wasserstoff: MXene steigert die Wirkung von Katalysatoren
    Science Highlight
    29.05.2025
    Grüner Wasserstoff: MXene steigert die Wirkung von Katalysatoren
    An den enorm großen inneren Oberflächen von MXenen können sich katalytisch aktive Partikel anheften. Mit diesem raffinierten Trick lässt sich ein preiswerter und viel effizienterer Katalysator für die Sauerstoffentwicklungsreaktion realisieren, die bei der Erzeugung von grünem Wasserstoff bislang als Engpass gilt. Dies hat eine internationale Forschergruppe um die HZB-Chemikerin Michelle Browne nun in einer aufwendigen Untersuchung nachgewiesen. Die Studie ist in Advanced Functional Materials veröffentlicht.