Quanten-Algorithmen sparen Zeit bei der Berechnung von Elektronendynamik

Durch die Berechnungen lassen sich die Elektronendichten sowie die Veränderungen nach Anregung mit hohen Orts- und Zeitauflösungen ermitteln. Hier ist am Beispiel des Moleküls Lithiumhydrid die Verschiebung von Elektrondichte vom Cyanid (rot) zum Lithium (grün) während eines Laserpulses zu erkennen.

Durch die Berechnungen lassen sich die Elektronendichten sowie die Veränderungen nach Anregung mit hohen Orts- und Zeitauflösungen ermitteln. Hier ist am Beispiel des Moleküls Lithiumhydrid die Verschiebung von Elektrondichte vom Cyanid (rot) zum Lithium (grün) während eines Laserpulses zu erkennen. © F. Langkabel / HZB

Quantencomputer versprechen erheblich kürzere Rechenzeiten für komplexe Probleme. Aber noch gibt es weltweit nur wenige Quantencomputer mit einer begrenzten Anzahl so genannter Qubits. Quantencomputer-Algorithmen können aber auch auf konventionellen Servern laufen, die einen Quantencomputer simulieren. Ein HZB-Team hat damit nun am Beispiel eines kleinen Moleküls dessen Elektronenorbitale und ihre dynamische Entwicklung nach einer Laserpulsanregung berechnet. Die Methode eignet sich auch, um größere Moleküle zu untersuchen, die mit konventionellen Methoden nicht mehr berechnet werden können.

„Diese Quantencomputer-Algorithmen sind ursprünglich in einem ganz anderen Kontext entwickelt worden. Wir haben sie hier erstmals genutzt, um Elektronendichten von Molekülen zu berechnen, insbesondere auch ihre dynamische Entwicklung nach Anregung durch einen Lichtpuls,“ sagt Annika Bande, die am HZB eine Gruppe zur theoretischen Chemie leitet. Zusammen mit Fabian Langkabel, der bei Bande promoviert, zeigte sie nun in einer Studie, wie gut dies funktioniert.

Fiktiver Quantencomputer

„Wir haben einen Algorithmus für einen fiktiven, völlig fehlerfreien Quantencomputer entwickelt, und ihn auf einem klassischen Server laufen lassen, der einen Quantencomputer von zehn Qbits simuliert,“ sagt Fabian Langkabel. Dabei begrenzten sie ihre Studie auf kleinere Moleküle, um die Rechnungen auch ohne echten Quantencomputer durchführen zu können und mit konventionellen Berechnungen zu vergleichen.

Weniger Rechenzeit

Sie konnten zeigen, dass auch die Quantenalgorithmen die erwarteten Ergebnisse produzierten. Im Unterschied zu konventionellen Berechnungen eignen sich die Quantenalgorithmen jedoch auch, um mit zukünftigen Quantencomputer deutlich größere Moleküle zu berechnen: „Das hat mit den Rechenzeiten zu tun. Sie steigen mit der Anzahl der Atome, aus denen das Molekül besteht“, sagt Langkabel.   Während die Rechenzeit sich mit jedem zusätzlichen Atom für konventionelle Verfahren vervielfacht ist das für Quantenalgorithmen nicht der Fall, was sie sehr viel schneller macht.

Zerfallsprozesse, Photokatalyse oder Rezeptormoleküle

Die Studie zeigt damit einen neuen Weg, um Elektronendichten und ihre „Antwort“ auf Anregungen mit Licht mit sehr hoher Orts- und Zeitauflösung vorab zu berechnen. Damit lassen sich beispielsweise ultraschnelle Zerfallsprozesse simulieren und verstehen, die auch bei Quantencomputern aus so genannten Quantenpunkten entscheidend sind. Aber auch Vorhersagen zum physikalischen oder chemischen Verhalten von Molekülen sind möglich, zum Beispiel während der Aufnahme von Licht und dem anschließenden Transfer von elektrischen Ladungen. Dies könnte die Entwicklung von Photokatalysatoren für die Produktion von grünem Wasserstoff mit Sonnenlicht erleichtern oder dabei helfen, Prozesse in den lichtempfindlichen Rezeptormolekülen im Auge zu verstehen.

arö


Das könnte Sie auch interessieren

  • Einfachere Herstellung von anorganischen Perowskit-Solarzellen bringt Vorteile
    Science Highlight
    17.04.2024
    Einfachere Herstellung von anorganischen Perowskit-Solarzellen bringt Vorteile
    Anorganische Perowskit-Solarzellen aus CsPbI3 sind langzeitstabil und erreichen gute Wirkungsgrade. Ein Team um Prof. Antonio Abate hat nun an BESSY II Oberflächen und Grenzflächen von CsPbI3 -Schichten analysiert, die unter unterschiedlichen Bedingungen produziert wurden. Die Ergebnisse belegen, dass das Ausglühen in Umgebungsluft die optoelektronischen Eigenschaften des Halbleiterfilms nicht negativ beeinflusst, sondern sogar zu weniger Defekten führt. Dies könnte die Massenanfertigung von anorganischen Perowskit-Solarzellen weiter vereinfachen.
  • Spintronik: Ein neuer Weg zu wirbelnden Spin-Texturen bei Raumtemperatur
    Science Highlight
    16.04.2024
    Spintronik: Ein neuer Weg zu wirbelnden Spin-Texturen bei Raumtemperatur
    Ein Team am HZB hat an BESSY II eine neue, einfache Methode untersucht, mit der sich stabile radiale magnetische Wirbel in magnetischen Dünnschichten erzeugen lassen.
  • BESSY II: Wie das gepulste Laden die Lebensdauer von Batterien verlängert
    Science Highlight
    08.04.2024
    BESSY II: Wie das gepulste Laden die Lebensdauer von Batterien verlängert
    Ein verbessertes Ladeprotokoll könnte die Lebensdauer von Lithium-Ionen-Batterien deutlich verlängern. Das Laden mit hochfrequentem gepulstem Strom verringert Alterungseffekte. Dies zeigte ein internationales Team unter der Leitung von Philipp Adelhelm (HZB und Humboldt-Universität) in Zusammenarbeit mit der Technischen Universität Berlin und der Aalborg University in Dänemark. Besonders aufschlussreich waren Experimente an der Röntgenquelle BESSY II.