Quanten-Algorithmen sparen Zeit bei der Berechnung von Elektronendynamik

Durch die Berechnungen lassen sich die Elektronendichten sowie die Veränderungen nach Anregung mit hohen Orts- und Zeitauflösungen ermitteln. Hier ist am Beispiel des Moleküls Lithiumhydrid die Verschiebung von Elektrondichte vom Cyanid (rot) zum Lithium (grün) während eines Laserpulses zu erkennen.

Durch die Berechnungen lassen sich die Elektronendichten sowie die Veränderungen nach Anregung mit hohen Orts- und Zeitauflösungen ermitteln. Hier ist am Beispiel des Moleküls Lithiumhydrid die Verschiebung von Elektrondichte vom Cyanid (rot) zum Lithium (grün) während eines Laserpulses zu erkennen. © F. Langkabel / HZB

Quantencomputer versprechen erheblich kürzere Rechenzeiten für komplexe Probleme. Aber noch gibt es weltweit nur wenige Quantencomputer mit einer begrenzten Anzahl so genannter Qubits. Quantencomputer-Algorithmen können aber auch auf konventionellen Servern laufen, die einen Quantencomputer simulieren. Ein HZB-Team hat damit nun am Beispiel eines kleinen Moleküls dessen Elektronenorbitale und ihre dynamische Entwicklung nach einer Laserpulsanregung berechnet. Die Methode eignet sich auch, um größere Moleküle zu untersuchen, die mit konventionellen Methoden nicht mehr berechnet werden können.

„Diese Quantencomputer-Algorithmen sind ursprünglich in einem ganz anderen Kontext entwickelt worden. Wir haben sie hier erstmals genutzt, um Elektronendichten von Molekülen zu berechnen, insbesondere auch ihre dynamische Entwicklung nach Anregung durch einen Lichtpuls,“ sagt Annika Bande, die am HZB eine Gruppe zur theoretischen Chemie leitet. Zusammen mit Fabian Langkabel, der bei Bande promoviert, zeigte sie nun in einer Studie, wie gut dies funktioniert.

Fiktiver Quantencomputer

„Wir haben einen Algorithmus für einen fiktiven, völlig fehlerfreien Quantencomputer entwickelt, und ihn auf einem klassischen Server laufen lassen, der einen Quantencomputer von zehn Qbits simuliert,“ sagt Fabian Langkabel. Dabei begrenzten sie ihre Studie auf kleinere Moleküle, um die Rechnungen auch ohne echten Quantencomputer durchführen zu können und mit konventionellen Berechnungen zu vergleichen.

Weniger Rechenzeit

Sie konnten zeigen, dass auch die Quantenalgorithmen die erwarteten Ergebnisse produzierten. Im Unterschied zu konventionellen Berechnungen eignen sich die Quantenalgorithmen jedoch auch, um mit zukünftigen Quantencomputer deutlich größere Moleküle zu berechnen: „Das hat mit den Rechenzeiten zu tun. Sie steigen mit der Anzahl der Atome, aus denen das Molekül besteht“, sagt Langkabel.   Während die Rechenzeit sich mit jedem zusätzlichen Atom für konventionelle Verfahren vervielfacht ist das für Quantenalgorithmen nicht der Fall, was sie sehr viel schneller macht.

Zerfallsprozesse, Photokatalyse oder Rezeptormoleküle

Die Studie zeigt damit einen neuen Weg, um Elektronendichten und ihre „Antwort“ auf Anregungen mit Licht mit sehr hoher Orts- und Zeitauflösung vorab zu berechnen. Damit lassen sich beispielsweise ultraschnelle Zerfallsprozesse simulieren und verstehen, die auch bei Quantencomputern aus so genannten Quantenpunkten entscheidend sind. Aber auch Vorhersagen zum physikalischen oder chemischen Verhalten von Molekülen sind möglich, zum Beispiel während der Aufnahme von Licht und dem anschließenden Transfer von elektrischen Ladungen. Dies könnte die Entwicklung von Photokatalysatoren für die Produktion von grünem Wasserstoff mit Sonnenlicht erleichtern oder dabei helfen, Prozesse in den lichtempfindlichen Rezeptormolekülen im Auge zu verstehen.

arö

Das könnte Sie auch interessieren

  • Neue Monochromatoroptiken für den „tender“ Röntgenbereich
    Science Highlight
    30.11.2022
    Neue Monochromatoroptiken für den „tender“ Röntgenbereich
    Bislang war es äußerst langwierig, Messungen mit hoher Empfindlichkeit und hoher Ortsauflösung mittels Röntgenlicht im „tender“ Energiebereich von 1,5 - 5,0 keV durchzuführen. Dabei eignet sich genau dieses Röntgenlicht ideal, um Energiematerialien für Batterien oder Katalysatoren, aber auch biologische Systeme zu untersuchen. Dieses Problem hat nun ein Team aus dem HZB gelöst: Die neu entwickelten Monochromatoroptiken erhöhen den Photonenfluss im „tender“ Energiebereich um den Faktor 100 und ermöglichen so hochpräzise Messungen nanostrukturierter Systeme. An katalytisch aktiven Nanopartikeln und Mikrochips wurde die Methode erstmals erfolgreich getestet.
  • Nanodiamanten als Photokatalysatoren mit Sonnenlicht aktivierbar
    Science Highlight
    30.11.2022
    Nanodiamanten als Photokatalysatoren mit Sonnenlicht aktivierbar
    Nanodiamant-Materialien besitzen Potenzial als preisgünstige Photokatalysatoren. Doch bisher benötigten solche Kohlenstoff-Nanopartikel energiereiches UV-Licht, um aktiv zu werden. Das DIACAT-Konsortium hat daher Variationen von Nanodiamant-Materialien hergestellt und analysiert. Die Arbeit zeigt: Wenn die Oberfläche der Nanopartikel mit ausreichend Wasserstoff-Atomen besetzt ist, reicht auch die schwächere Energie von Licht im sichtbaren Bereich für die Anregung aus. Photokatalysatoren auf Basis von Nanodiamanten könnten in Zukunft mit Sonnenlicht CO2 oder N2 in Kohlenwasserstoffe oder Ammoniak umwandeln.
  • Tomographie zeigt hohes Potenzial von Kupfersulfid-Feststoffbatterien
    Science Highlight
    28.11.2022
    Tomographie zeigt hohes Potenzial von Kupfersulfid-Feststoffbatterien
    Feststoffbatterien ermöglichen noch höhere Energiedichten als Lithium-Ionenbatterien bei hoher Sicherheit. Einem Team um Prof. Philipp Adelhelm und Dr. Ingo Manke ist es gelungen, eine Feststoffbatterie während des Ladens und Entladens zu beobachten und hochaufgelöste 3D-Bilder zu erstellen. Dabei zeigte sich, dass sich Rissbildung durch höheren Druck effektiv verringern lässt.