Quantum algorithms save time in the calculation of electron dynamics

The calculations allow the electron densities and the changes after excitation to be determined with high spatial and temporal resolution. Here, the example of the lithium hydride molecule shows the shift of electron density from cyanide (red) to lithium (green) during a laser pulse.

The calculations allow the electron densities and the changes after excitation to be determined with high spatial and temporal resolution. Here, the example of the lithium hydride molecule shows the shift of electron density from cyanide (red) to lithium (green) during a laser pulse. © F. Langkabel / HZB

Quantum computers promise significantly shorter computing times for complex problems. But there are still only a few quantum computers worldwide with a limited number of so-called qubits. However, quantum computer algorithms can already run on conventional servers that simulate a quantum computer. A team at HZB has succeeded to calculate the electron orbitals and their dynamic development on the example of a small molecule after a laser pulse excitation. In principle, the method is also suitable for investigating larger molecules that cannot be calculated using conventional methods.

 

"These quantum computer algorithms were originally developed in a completely different context. We used them here for the first time to calculate electron densities of molecules, in particular also their dynamic evolution after excitation by a light pulse," says Annika Bande, who heads a group on theoretical chemistry at HZB. Together with Fabian Langkabel, who is doing his doctorate with Bande, she has now shown in a study how well this works.

Error-free quantum computer

"We developed an algorithm for a fictitious, completely error-free quantum computer and ran it on a classical server simulating a quantum computer of ten Qbits," says Fabian Langkabel. The scientists limited their study to smaller molecules in order to be able to perform the calculations without a real quantum computer and to compare them with conventional calculations.

Faster computation

Indeed, the quantum algorithms produced the expected results. In contrast to conventional calculations, however, the quantum algorithms are also suitable for calculating significantly larger molecules with future quantum computers: "This has to do with the calculation times. They increase with the number of atoms that make up the molecule," says Langkabel. While the computing time multiplies with each additional atom for conventional methods, this is not the case for quantum algorithms, which makes them much faster.

Photocatalysis, light reception and more

The study thus shows a new way to calculate electron densities and their "response" to excitations with light in advance with very high spatial and temporal resolution. This makes it possible, for example, to simulate and understand ultrafast decay processes, which are also crucial in quantum computers made of so-called quantum dots. Also predictions about the physical or chemical behaviour of molecules are possible, for example during the absorption of light and the subsequent transfer of electrical charges. This could facilitate the development of photocatalysts for the production of green hydrogen with sunlight or help to understand processes in the light-sensitive receptor molecules in the eye.

arö

You might also be interested in

  • New monochromator optics for tender X-rays
    Science Highlight
    30.11.2022
    New monochromator optics for tender X-rays
    Until now, it has been extremely tedious to perform measurements with high sensitivity and high spatial resolution using X-ray light in the tender energy range of 1.5 - 5.0 keV. Yet this X-ray light is ideal for investigating energy materials such as batteries or catalysts, but also biological systems. A team from HZB has now solved this problem: The newly developed monochromator optics increase the photon flux in the tender energy range by a factor of 100 and thus enable highly precise measurements of nanostructured systems. The method was successfully tested for the first time on catalytically active nanoparticles and microchips.
  • Nanodiamonds can be activated as photocatalysts with sunlight
    Science Highlight
    30.11.2022
    Nanodiamonds can be activated as photocatalysts with sunlight
    Nanodiamond materials have potential as low-cost photocatalysts. But until now, such carbon nanoparticles required high-energy UV light to become active. The DIACAT consortium has therefore produced and analysed variations of nanodiamond materials. The work shows: If the surface of the nanoparticles is occupied by sufficient hydrogen atoms, even the weaker energy of blue sunlight is sufficient for excitation. Future photocatalysts based on nanodiamonds might be able to convert CO2 or N2 into hydrocarbons or ammonia with sunlight.
  • Tomography shows high potential of copper sulphide solid-state batteries
    Science Highlight
    28.11.2022
    Tomography shows high potential of copper sulphide solid-state batteries
    Solid-state batteries enable even higher energy densities than lithium-ion batteries with high safety. A team led by Prof. Philipp Adelhelm and Dr. Ingo Manke succeeded in observing a solid-state battery during charging and discharging and creating high-resolution 3D images. This showed that cracking can be effectively reduced through higher pressure.