Neue Monochromatoroptiken für den „tender“ Röntgenbereich

Schematische Darstellung des neuartigen Monochromatorkonzepts an der U41-PGM1-Beamline bei BESSY-II basierend auf einem Multilayer beschichteten Sägezahn-Gitter und Planspiegel zur Verbesserung des Photonenflusses im „tender“ Röntgenphotonenenergiebereich (1,5 – 5,0 keV). Der Ausschnitt zeigt ein TEM-Bild des Querschnitts der Cr/C-Multilayer-Gitterstrukturen. Zur besseren Visualisierung der Gitterperiode wurde das Bild horizontal 10-fach komprimiert.

Schematische Darstellung des neuartigen Monochromatorkonzepts an der U41-PGM1-Beamline bei BESSY-II basierend auf einem Multilayer beschichteten Sägezahn-Gitter und Planspiegel zur Verbesserung des Photonenflusses im „tender“ Röntgenphotonenenergiebereich (1,5 – 5,0 keV). Der Ausschnitt zeigt ein TEM-Bild des Querschnitts der Cr/C-Multilayer-Gitterstrukturen. Zur besseren Visualisierung der Gitterperiode wurde das Bild horizontal 10-fach komprimiert. © HZB / Small Methods 2022

Röntgenmikroskopische Aufnahmen einer 400 nm dicken Lamelle, die aus einem modernen Mikrochip extrahiert wurde. Die Einzelbilder stammen aus einer mikrospektroskopischen Energieserie aufgenommen an der Si-K-Absorptionskante. Die NEXAFS-Spektren wurden aus der Energieserie für SiCN- und OSG-Materialien extrahiert. Die entsprechenden Energiepeaks ergeben sich auf Grund der dominierenden Si-C-Bindungen für SiCN und der dominierenden Si-O-Bindungen für OSG-Dielektrika.

Röntgenmikroskopische Aufnahmen einer 400 nm dicken Lamelle, die aus einem modernen Mikrochip extrahiert wurde. Die Einzelbilder stammen aus einer mikrospektroskopischen Energieserie aufgenommen an der Si-K-Absorptionskante. Die NEXAFS-Spektren wurden aus der Energieserie für SiCN- und OSG-Materialien extrahiert. Die entsprechenden Energiepeaks ergeben sich auf Grund der dominierenden Si-C-Bindungen für SiCN und der dominierenden Si-O-Bindungen für OSG-Dielektrika. © HZB / Small Methods 2022

Bislang war es äußerst langwierig, Messungen mit hoher Empfindlichkeit und hoher Ortsauflösung mittels Röntgenlicht im „tender“ Energiebereich von 1,5 - 5,0 keV durchzuführen. Dabei eignet sich genau dieses Röntgenlicht ideal, um Energiematerialien für Batterien oder Katalysatoren, aber auch biologische Systeme zu untersuchen. Dieses Problem hat nun ein Team aus dem HZB gelöst: Die neu entwickelten Monochromatoroptiken erhöhen den Photonenfluss im „tender“ Energiebereich um den Faktor 100 und ermöglichen so hochpräzise Messungen nanostrukturierter Systeme. An katalytisch aktiven Nanopartikeln und Mikrochips wurde die Methode erstmals erfolgreich getestet.

Für die Umstellung auf eine klimaneutrale Energieversorgung werden vielfältigste Materialien für Umwandlungsprozesse benötigt, zum Beispiel katalytisch aktive Materialien und neuartige Elektroden für den Einsatz in Batterien. Viele dieser Materialien besitzen Nanostrukturen, die ihre Funktionalität steigern. Bei der Untersuchung dieser Proben werden spektroskopische Messungen zum Nachweis der chemischen Eigenschaften idealerweise mit Röntgenbildgebung mit hoher Ortsauflösung im Nanobereich kombiniert. Da Schlüsselelemente in diesen Materialien, wie Molybdän, Silizium oder Schwefel, jedoch vorwiegend auf Röntgenstrahlung im sogenannten „tender“ Photonenenergiebereich reagieren, gab es bislang ein großes Problem.

Denn in diesem mittleren „tender“ Energiebereich zwischen weicher und harter Röntgenstrahlung liefern herkömmliche Röntgenoptiken aus Plangitter- oder Kristallmonochromatoren nur sehr geringe Effizienzen. Ein Team aus dem HZB hat dieses Problem nun gelöst: „Wir haben neuartige Monochromatoroptiken entwickelt. Diese Optiken basieren auf einem angepassten, Multilayer beschichteten Sägezahn-Gitter mit einem Planspiegel“, sagt Frank Siewert von der HZB-Abteilung Optik und Strahlrohre. Das neue Monochromatorkonzept steigert den Photonenfluss im „tender“ Röntgenbereich um den Faktor 100 und ermöglicht damit erstmals hochempfindliche spektromikroskopische Messungen mit hohen Auflösungen. „Innerhalb kurzer Zeit konnten wir Messdaten aus NEXAFS-Spektromikroskopiestudien im Nanobereich erhalten, dies haben wir an katalytisch aktiven Nanopartikeln und modernen Mikrochipstrukturen nachgewiesen“ sagt Stephan Werner, Erstautor der Publikation. „Die neue Entwicklung ermöglicht jetzt Experimente, die sonst monatelange Datenerfassung erfordert hätten“, betont Werner.

„Dieser Monochromator wird die Methode der Wahl für die Bildgebung in diesem Röntgenbereich werden, nicht nur an Synchrotronen weltweit, sondern auch an Freien-Elektronen-Lasern und Laborquellen“, sagt Gerd Schneider, der die Abteilung Röntgenmikroskopie am HZB leitet. Er erwartet enorme Auswirkungen auf viele Bereiche der Materialforschung: Studien im „tender“ Röntgenbereich könnten die Entwicklung von Energiematerialien deutlich voranbringen und damit einen Beitrag zu klimaneutralen Lösungen für die Strom- und Energieversorgung leisten.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • MXene als Energiespeicher: Vielseitiger als gedacht
    Science Highlight
    03.02.2026
    MXene als Energiespeicher: Vielseitiger als gedacht
    MXene-Materialien könnten sich für eine neue Technologie eignen, um elektrische Ladungen zu speichern. Die Ladungsspeicherung war jedoch bislang in MXenen nicht vollständig verstanden. Ein Team am HZB hat erstmals einzelne MXene-Flocken untersucht, um diese Prozesse im Detail aufzuklären. Mit dem in situ-Röntgenmikroskop „MYSTIIC” an BESSY II gelang es ihnen, die chemischen Zustände von Titanatomen auf den Oberflächen der MXene-Flocken zu kartieren. Die Ergebnisse zeigen, dass es zwei unterschiedliche Redox-Reaktionen gibt, die vom jeweils verwendeten Elektrolyten abhängen. Die Studie schafft eine Grundlage für die Optimierung von MXene-Materialien als pseudokapazitive Energiespeicher.
  • Bernd Rech in den BR50 Vorstand gewählt
    Nachricht
    30.01.2026
    Bernd Rech in den BR50 Vorstand gewählt
    Der wissenschaftliche Geschäftsführer des Helmholtz-Zentrum Berlin ist das neue Gesicht hinter der Unit „Naturwissenschaften“ beim Berlin Research 50 (BR50). Nach der Wahl im Dezember 2025 fand am 22. Januar 2026 die konstituierende Sitzung des neuen BR50-Vorstands statt.  Mitglieder sind Michael Hintermüller (Weierstrass Institute, WIAS), Noa K. Ha (Deutsches Zentrum für Integrations- und Migrationsforschung, DeZIM), Volker Haucke (Leibniz-Forschungsinstitut für Molekulare Pharmakologie, FMP), Uta Bielfeldt (Deutsches Rheuma-Forschungszentrum Berlin, DRFZ) und Bernd Rech (HZB).
  • Ein Rekordjahr für das HZB-Reallabor für bauwerksintegrierte Photovoltaik
    Nachricht
    27.01.2026
    Ein Rekordjahr für das HZB-Reallabor für bauwerksintegrierte Photovoltaik
    Unsere Solarfassade in Berlin-Adlershof hat im Jahr 2025 so viel Strom erzeugt wie in keinem der vergangenen vier Betriebsjahre.