KI-gestützte Software schafft Durchblick bei komplexen Daten

Experimentelle Daten sind oft nicht nur hochdimensional, sondern auch verrauscht und voller Artefakte. Das erschwert es, die Daten zu interpretieren. Nun hat ein Team am HZB eine Software konzipiert, die mit Hilfe von selbstlernenden neuronalen Netzwerken die Daten smart komprimiert und im nächsten Schritt eine rauscharme Version rekonstruieren kann. Das ermöglicht Einblicke in Zusammenhänge, die sonst nicht erkennbar wären. Die Software wurde jetzt erfolgreich für die Photonendiagnostik beim Freien Elektronenlaser FLASH bei DESY eingesetzt. Sie eignet sich jedoch für ganz unterschiedliche Anwendungen in der Wissenschaft.

Viel ist nicht immer besser, sondern manchmal auch ein Problem. Bei hochkomplexen Daten, die aufgrund ihrer zahlreichen Parameter sehr viele Dimensionen besitzen, sind Zusammenhänge oft nicht mehr erkennbar. Zumal experimentell gewonnene Daten durch Einflüsse, die sich nicht kontrollieren lassen, zusätzlich gestört und verrauscht sind.

Daten für Menschen interpretierbar machen

Nun kann eine neue Software helfen, die auf Methoden der Künstlichen Intelligenz basiert: Es handelt sich um eine besondere Klasse von neuronalen Netzen (NN), die Fachleute mit dem Begriff „disentangled variational autoencoder network (β-VAE)“ bezeichnen. Vereinfacht gesagt sorgt das erste NN für die Komprimierung der Daten, während das zweite NN im Anschluss die Daten wieder rekonstruiert. „Dabei sind die beiden NN so trainiert, dass die komprimierte Form für den Menschen interpretierbar wird“, erklärt Dr. Gregor Hartmann. Der Physiker und Datenwissenschaftler betreut am HZB das Joint Lab zu Methoden der Künstlichen Intelligenz, das vom HZB gemeinsam mit der Universität Kassel betrieben wird.

Die β-VAEs extrahieren ohne Vorkenntnisse das Kernprinzip

Google Deepmind hatte bereits in 2017 vorgeschlagen, β-VAEs zu nutzen. Viele Expertinnen und Experten gingen davon aus, dass die Anwendung in der echten Welt herausfordernd werden wird, da gerade nicht-lineare Komponenten schwer entwirrbar sind. “Nach mehreren Jahren, in denen wir lernen mussten, wie die NN lernen, funktionierte es dann endlich”, sagt Hartmann. β-VAEs sind in der Lage, ein zugrunde liegende Kernprinzip ohne Vorkenntnisse aus Daten zu extrahieren.

Photonenenergie von FLASH bestimmt

In der nun veröffentlichten Studie hat die Gruppe die Software genutzt, um die Photonenenergie von FLASH aus Einzelphotoelektronenspektren zu bestimmen. „Es ist uns gelungen, aus verrauschten Elektronflugzeitdaten diese Informationen zu extrahieren, und zwar deutlich besser als mit herkömmlichen Analysemethoden“, sagt Hartmann. Auch Daten mit detektorspezifischen Artefakten können so bereinigt werden.

Werkzeug für die Forschung

„Die Methode ist richtig gut, wenn es um beeinträchtigte Daten geht“, betont Hartmann. Das Programm ist sogar in der Lage, winzige Signale, die in den Rohdaten nicht erkennbar waren, zu rekonstruieren. Solche Netzwerke können dazu beitragen, unerwartete physikalische Effekte oder Korrelationen in großen experimentellen Datensätzen aufzudecken. „Die KI-basierte intelligente Datenkompression ist ein sehr leistungsstarkes Werkzeug, nicht nur in der Photonenforschung“, sagt Hartmann.

Jetzt "Plug and Play"

Insgesamt haben Hartmann und sein Team drei Jahre lang an der Entwicklung der Software gearbeitet. „Aber nun ist, zumindest der Einstieg in neue Projekte plug and play. Wir hoffen, dass bald viele Kolleginnen und Kollegen mit ihren Daten kommen und wir sie unterstützen können.“

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
    Science Highlight
    21.10.2025
    BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
    Erstmals ist es einem Team an BESSY II gelungen, experimentell eindimensionale elektronische Eigenschaften in einem Material nachzuweisen. Die Proben bestanden aus kurzen Ketten aus Phosphoratomen, die sich auf einem Silbersubstrat selbst organisiert in bestimmten Winkeln bilden. Durch eine raffinierte Auswertung gelang es, die Beiträge von unterschiedlich ausgerichteten Ketten voneinander zu trennen und zu zeigen, dass die elektronischen Eigenschaften tatsächlich einen eindimensionalen Charakter besitzen. Berechnungen zeigten darüber hinaus, dass ein spannender Phasenübergang zu erwarten ist. Während das Material aus einzelnen Ketten halbleitend ist, wäre eine sehr dichte Kettenstruktur metallisch.
  • Ein innerer Kompass für Meereslebewesen im Paläozän
    Science Highlight
    20.10.2025
    Ein innerer Kompass für Meereslebewesen im Paläozän
    Vor Jahrmillionen produzierten einige Meeresorganismen mysteriöse Magnetpartikel von ungewöhnlicher Größe, die heute als Fossilien in Sedimenten zu finden sind. Nun ist es einem internationalen Team gelungen, die magnetischen Domänen auf einem dieser „Riesenmagnetfossilien” mit einer raffinierten Methode an der Diamond-Röntgenquelle zu kartieren. Ihre Analyse zeigt, dass diese Partikel es den Organismen ermöglicht haben könnten, winzige Schwankungen sowohl in der Richtung als auch in der Intensität des Erdmagnetfelds wahrzunehmen. Dadurch konnten sie sich verorten und über den Ozean navigieren. Die neue Methode eignet sich auch, um zu testen, ob bestimmte Eisenoxidpartikel in Marsproben tatsächlich biogenen Ursprungs sind.
  • Was vibrierende Moleküle über die Zellbiologie verraten
    Science Highlight
    16.10.2025
    Was vibrierende Moleküle über die Zellbiologie verraten
    Mit Infrarot-Vibrationsspektroskopie an BESSY II lassen sich hochaufgelöste Karten von Molekülen in lebenden Zellen und Zellorganellen in ihrer natürlichen wässrigen Umgebung erstellen, zeigt eine neue Studie von einem Team aus HZB und Humboldt-Universität zu Berlin. Die Nano-IR-Spektroskopie mit SNOM an der IRIS-Beamline eignet sich, um winzige biologische Proben zu untersuchen und Infrarotbilder der Molekülschwingungen mit Nanometer-Auflösung zu erzeugen. Es ist sogar möglich, 3D-Informationen, also Infrarot-Tomogramme, aufzuzeichnen. Um das Verfahren zu testen, hat das Team Fibroblasten auf einer hochtransparenten SiC-Membran gezüchtet und in vivo untersucht. Die Methode ermöglicht neue Einblicke in die Zellbiologie.