KI-gestützte Software schafft Durchblick bei komplexen Daten

Experimentelle Daten sind oft nicht nur hochdimensional, sondern auch verrauscht und voller Artefakte. Das erschwert es, die Daten zu interpretieren. Nun hat ein Team am HZB eine Software konzipiert, die mit Hilfe von selbstlernenden neuronalen Netzwerken die Daten smart komprimiert und im nächsten Schritt eine rauscharme Version rekonstruieren kann. Das ermöglicht Einblicke in Zusammenhänge, die sonst nicht erkennbar wären. Die Software wurde jetzt erfolgreich für die Photonendiagnostik beim Freien Elektronenlaser FLASH bei DESY eingesetzt. Sie eignet sich jedoch für ganz unterschiedliche Anwendungen in der Wissenschaft.

Viel ist nicht immer besser, sondern manchmal auch ein Problem. Bei hochkomplexen Daten, die aufgrund ihrer zahlreichen Parameter sehr viele Dimensionen besitzen, sind Zusammenhänge oft nicht mehr erkennbar. Zumal experimentell gewonnene Daten durch Einflüsse, die sich nicht kontrollieren lassen, zusätzlich gestört und verrauscht sind.

Daten für Menschen interpretierbar machen

Nun kann eine neue Software helfen, die auf Methoden der Künstlichen Intelligenz basiert: Es handelt sich um eine besondere Klasse von neuronalen Netzen (NN), die Fachleute mit dem Begriff „disentangled variational autoencoder network (β-VAE)“ bezeichnen. Vereinfacht gesagt sorgt das erste NN für die Komprimierung der Daten, während das zweite NN im Anschluss die Daten wieder rekonstruiert. „Dabei sind die beiden NN so trainiert, dass die komprimierte Form für den Menschen interpretierbar wird“, erklärt Dr. Gregor Hartmann. Der Physiker und Datenwissenschaftler betreut am HZB das Joint Lab zu Methoden der Künstlichen Intelligenz, das vom HZB gemeinsam mit der Universität Kassel betrieben wird.

Die β-VAEs extrahieren ohne Vorkenntnisse das Kernprinzip

Google Deepmind hatte bereits in 2017 vorgeschlagen, β-VAEs zu nutzen. Viele Expertinnen und Experten gingen davon aus, dass die Anwendung in der echten Welt herausfordernd werden wird, da gerade nicht-lineare Komponenten schwer entwirrbar sind. “Nach mehreren Jahren, in denen wir lernen mussten, wie die NN lernen, funktionierte es dann endlich”, sagt Hartmann. β-VAEs sind in der Lage, ein zugrunde liegende Kernprinzip ohne Vorkenntnisse aus Daten zu extrahieren.

Photonenenergie von FLASH bestimmt

In der nun veröffentlichten Studie hat die Gruppe die Software genutzt, um die Photonenenergie von FLASH aus Einzelphotoelektronenspektren zu bestimmen. „Es ist uns gelungen, aus verrauschten Elektronflugzeitdaten diese Informationen zu extrahieren, und zwar deutlich besser als mit herkömmlichen Analysemethoden“, sagt Hartmann. Auch Daten mit detektorspezifischen Artefakten können so bereinigt werden.

Werkzeug für die Forschung

„Die Methode ist richtig gut, wenn es um beeinträchtigte Daten geht“, betont Hartmann. Das Programm ist sogar in der Lage, winzige Signale, die in den Rohdaten nicht erkennbar waren, zu rekonstruieren. Solche Netzwerke können dazu beitragen, unerwartete physikalische Effekte oder Korrelationen in großen experimentellen Datensätzen aufzudecken. „Die KI-basierte intelligente Datenkompression ist ein sehr leistungsstarkes Werkzeug, nicht nur in der Photonenforschung“, sagt Hartmann.

Jetzt "Plug and Play"

Insgesamt haben Hartmann und sein Team drei Jahre lang an der Entwicklung der Software gearbeitet. „Aber nun ist, zumindest der Einstieg in neue Projekte plug and play. Wir hoffen, dass bald viele Kolleginnen und Kollegen mit ihren Daten kommen und wir sie unterstützen können.“

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Die Zukunft der Korallen – Was Röntgenuntersuchungen zeigen können
    Interview
    12.11.2025
    Die Zukunft der Korallen – Was Röntgenuntersuchungen zeigen können
    In diesem Sommer war es in allen Medien. Angetrieben durch die Klimakrise haben nun auch die Ozeane einen kritischen Punkt überschritten, sie versauern immer mehr. Meeresschnecken zeigen bereits erste Schäden, aber die zunehmende Versauerung könnte auch die kalkhaltigen Skelettstrukturen von Korallen beeinträchtigen. Dabei leiden Korallen außerdem unter marinen Hitzewellen und Verschmutzung, die weltweit zur Korallenbleiche und zum Absterben ganzer Riffe führen. Wie genau wirkt sich die Versauerung auf die Skelettbildung aus?

    Die Meeresbiologin Prof. Dr. Tali Mass von der Universität Haifa, Israel, ist Expertin für Steinkorallen. Zusammen mit Prof. Dr. Paul Zaslansky, Experte für Röntgenbildgebung an der Charité Berlin, untersuchte sie an BESSY II die Skelettbildung bei Babykorallen, die unter verschiedenen pH-Bedingungen aufgezogen wurden. Antonia Rötger befragte die beiden Experten online zu ihrer aktuellen Studie und der Zukunft der Korallenriffe. 

  • Susanne Nies in EU-Beratergruppe zu Green Deal berufen
    Nachricht
    12.11.2025
    Susanne Nies in EU-Beratergruppe zu Green Deal berufen
    Dr. Susanne Nies leitet am HZB das Projekt Green Deal Ukraina, das den Aufbau eines nachhaltigen Energiesystems in der Ukraine unterstützt. Die Energieexpertin wurde nun auch in die wissenschaftliche Beratergruppe der Europäischen Kommission berufen, um im Zusammenhang mit der Netto-Null-Zielsetzung (DG GROW) regulatorische Belastungen aufzuzeigen und dazu zu beraten.
  • Langzeit-Stabilität von Perowskit-Solarzellen deutlich gesteigert
    Science Highlight
    07.11.2025
    Langzeit-Stabilität von Perowskit-Solarzellen deutlich gesteigert
    Perowskit-Solarzellen sind kostengünstig in der Herstellung und liefern viel Leistung pro Fläche. Allerdings sind sie bisher noch nicht stabil genug für den Langzeit-Einsatz. Nun hat ein internationales Team unter der Leitung von Prof. Dr. Antonio Abate durch eine neuartige Beschichtung der Grenzfläche zwischen Perowskitschicht und dem Top-Kontakt die Stabilität drastisch erhöht. Dabei stieg der Wirkungsgrad auf knapp 27 Prozent, was dem aktuellen state-of-the-art entspricht. Dieser hohe Wirkungsgrad nahm auch nach 1.200 Stunden im Dauerbetrieb nicht ab. An der Studie waren Forschungsteams aus China, Italien, der Schweiz und Deutschland beteiligt. Sie wurde in Nature Photonics veröffentlicht.