KI-gestützte Software schafft Durchblick bei komplexen Daten

Experimentelle Daten sind oft nicht nur hochdimensional, sondern auch verrauscht und voller Artefakte. Das erschwert es, die Daten zu interpretieren. Nun hat ein Team am HZB eine Software konzipiert, die mit Hilfe von selbstlernenden neuronalen Netzwerken die Daten smart komprimiert und im nächsten Schritt eine rauscharme Version rekonstruieren kann. Das ermöglicht Einblicke in Zusammenhänge, die sonst nicht erkennbar wären. Die Software wurde jetzt erfolgreich für die Photonendiagnostik beim Freien Elektronenlaser FLASH bei DESY eingesetzt. Sie eignet sich jedoch für ganz unterschiedliche Anwendungen in der Wissenschaft.

Viel ist nicht immer besser, sondern manchmal auch ein Problem. Bei hochkomplexen Daten, die aufgrund ihrer zahlreichen Parameter sehr viele Dimensionen besitzen, sind Zusammenhänge oft nicht mehr erkennbar. Zumal experimentell gewonnene Daten durch Einflüsse, die sich nicht kontrollieren lassen, zusätzlich gestört und verrauscht sind.

Daten für Menschen interpretierbar machen

Nun kann eine neue Software helfen, die auf Methoden der Künstlichen Intelligenz basiert: Es handelt sich um eine besondere Klasse von neuronalen Netzen (NN), die Fachleute mit dem Begriff „disentangled variational autoencoder network (β-VAE)“ bezeichnen. Vereinfacht gesagt sorgt das erste NN für die Komprimierung der Daten, während das zweite NN im Anschluss die Daten wieder rekonstruiert. „Dabei sind die beiden NN so trainiert, dass die komprimierte Form für den Menschen interpretierbar wird“, erklärt Dr. Gregor Hartmann. Der Physiker und Datenwissenschaftler betreut am HZB das Joint Lab zu Methoden der Künstlichen Intelligenz, das vom HZB gemeinsam mit der Universität Kassel betrieben wird.

Die β-VAEs extrahieren ohne Vorkenntnisse das Kernprinzip

Google Deepmind hatte bereits in 2017 vorgeschlagen, β-VAEs zu nutzen. Viele Expertinnen und Experten gingen davon aus, dass die Anwendung in der echten Welt herausfordernd werden wird, da gerade nicht-lineare Komponenten schwer entwirrbar sind. “Nach mehreren Jahren, in denen wir lernen mussten, wie die NN lernen, funktionierte es dann endlich”, sagt Hartmann. β-VAEs sind in der Lage, ein zugrunde liegende Kernprinzip ohne Vorkenntnisse aus Daten zu extrahieren.

Photonenenergie von FLASH bestimmt

In der nun veröffentlichten Studie hat die Gruppe die Software genutzt, um die Photonenenergie von FLASH aus Einzelphotoelektronenspektren zu bestimmen. „Es ist uns gelungen, aus verrauschten Elektronflugzeitdaten diese Informationen zu extrahieren, und zwar deutlich besser als mit herkömmlichen Analysemethoden“, sagt Hartmann. Auch Daten mit detektorspezifischen Artefakten können so bereinigt werden.

Werkzeug für die Forschung

„Die Methode ist richtig gut, wenn es um beeinträchtigte Daten geht“, betont Hartmann. Das Programm ist sogar in der Lage, winzige Signale, die in den Rohdaten nicht erkennbar waren, zu rekonstruieren. Solche Netzwerke können dazu beitragen, unerwartete physikalische Effekte oder Korrelationen in großen experimentellen Datensätzen aufzudecken. „Die KI-basierte intelligente Datenkompression ist ein sehr leistungsstarkes Werkzeug, nicht nur in der Photonenforschung“, sagt Hartmann.

Jetzt "Plug and Play"

Insgesamt haben Hartmann und sein Team drei Jahre lang an der Entwicklung der Software gearbeitet. „Aber nun ist, zumindest der Einstieg in neue Projekte plug and play. Wir hoffen, dass bald viele Kolleginnen und Kollegen mit ihren Daten kommen und wir sie unterstützen können.“

arö


Das könnte Sie auch interessieren

  • BESSY II: Wie das gepulste Laden die Lebensdauer von Batterien verlängert
    Science Highlight
    08.04.2024
    BESSY II: Wie das gepulste Laden die Lebensdauer von Batterien verlängert
    Ein verbessertes Ladeprotokoll könnte die Lebensdauer von Lithium-Ionen-Batterien deutlich verlängern. Das Laden mit hochfrequentem gepulstem Strom verringert Alterungseffekte. Dies zeigte ein internationales Team unter der Leitung von Philipp Adelhelm (HZB und Humboldt-Universität) in Zusammenarbeit mit der Technischen Universität Berlin und der Aalborg University in Dänemark. Besonders aufschlussreich waren Experimente an der Röntgenquelle BESSY II.
  • Brennstoffzellen: Oxidationsprozesse von Phosphorsäure aufgeklärt
    Science Highlight
    03.04.2024
    Brennstoffzellen: Oxidationsprozesse von Phosphorsäure aufgeklärt
    Die Wechselwirkungen zwischen Phosporsäure und dem Platin-Katalysator in Hochtemperatur-PEM-Brennstoffzellen sind komplexer als bisher angenommen. Röntgen-Experimente an BESSY II in einem mittleren Energiebereich (tender x-rays) haben die vielfältigen Oxidationsprozesse an der Platin-Elektrolyt-Grenzfläche entschlüsselt. Die Ergebnisse zeigen auch, dass die Feuchtigkeit in der Brennstoffzelle diese Prozesse beeinflusst, so dass sich hier Möglichkeiten bieten, um Lebensdauer und Wirkungsgrad von Brennstoffzellen zu erhöhen. 
  • Befruchtung unter dem Röntgenstrahl
    Science Highlight
    19.03.2024
    Befruchtung unter dem Röntgenstrahl
    Nachdem die Eizelle von einem Spermium befruchtet wurde, zieht sich die Eihülle zusammen und schützt den Embryo, indem sie mechanisch das Eindringen weiterer Spermien verhindert. Diesen neuen Einblick hat nun ein Team des Karolinska Instituts u.a. durch Messungen an den Röntgenlichtquellen BESSY II, DLS und ESRF gewonnen.