Elektrokatalyse - Chemie und Struktur von Eisen- Kobalt-Oxyhydroxiden vermessen

LiFe<sub>x-1</sub>Co<sub>x</sub> Borophosphate k&ouml;nnten als preiswerte Anoden f&uuml;r die Erzeugung von gr&uuml;nem Wasserstoff eingesetzt werden. Nun hat ein Team an BESSY II untersucht, was an den katalytisch aktiven Molek&uuml;lzentren passiert.

LiFex-1Cox Borophosphate könnten als preiswerte Anoden für die Erzeugung von grünem Wasserstoff eingesetzt werden. Nun hat ein Team an BESSY II untersucht, was an den katalytisch aktiven Molekülzentren passiert. © P. Menezes / HZB /TU Berlin

Ein Team um Dr. Prashanth W. Menezes (HZB/TU-Berlin) hat Kobalt-Eisen-Oxyhydroxide an BESSY II untersucht. Diese Materialklasse zählt zu den besten Anoden-Katalysatoren, um elektrolytisch Wasser aufzuspalten und grünen Wasserstoff zu gewinnen. Insbesondere gelang es, die Oxidationsstufen der aktiven Elemente in verschiedenen Konfigurationen zu bestimmen. Die Ergebnisse könnten zur wissensbasierten Entwicklung neuer hocheffizienter und kostengünstiger katalytisch aktiver Materialien beitragen.

Sobald wie möglich müssen wir ohne fossile Brennstoffe auskommen, nicht nur im Energiesektor, sondern auch in der Industrie. Die aber ist auf Kohlenwasserstoffe und andere chemische Grundstoffe angewiesen, die bisher aus fossilen Ressourcen gewonnen werden. Solche Grundstoffe können im Prinzip mit Hilfe elektrokatalytisch aktiver Materialien und erneuerbar erzeugter Energie auch aus Wasser und Kohlendioxid hergestellt werden. Derzeit bestehen diese Katalysatormaterialien jedoch entweder aus teuren und seltenen Materialien oder sind nicht effizient genug.

Schlüsselreaktion bei der Wasserspaltung

Ein Team um Dr. Prashanth W. Menezes (HZB/TU-Berlin) hat nun Einblicke in die Chemie eines der aktivsten Katalysatoren für die anodische Sauerstoffentwicklungsreaktion (OER) gewonnen. Dies ist eine Schlüsselreaktion bei der Wasserspaltung, die Elektronen für die Wasserstoffentwicklungsreaktion (HER) bereit stellt. Der Wasserstoff kann dann zum Beispiel zu Kohlenwasserstoffen weiter verarbeitet werden. Darüber hinaus spielt die OER auch bei der direkten elektrokatalytischen Reduktion von Kohlendioxid zu Alkoholen oder Kohlenwasserstoffen eine zentrale Rolle.

Elektrokatalysatoren für die Sauerstoffentwicklung

Eine vielversprechende Klasse von Elektrokatalysatoren für OER sind Kobalt-Eisen-Oxyhydroxide. Das Forschungsteam analysierte eine Reihe von helikalen LiFe1-xCox-Borophosphaten an BESSY II, die sich während der OER zu aktiven Kobalt-Eisen-Oxyhydroxiden umstrukturieren. Mit  verschiedenen in situ Spektroskopietechniken gelang es, die Oxidationsstufen der Element Eisen (Fe) und Kobalt (Co) zu bestimmen.

Katalytisches Zentrum untersucht

„Eisen spielt eine wichtige Rolle in OER-Katalysatoren auf Kobalt-Basis. Der genaue Grund dafür ist jedoch umstritten. Die meisten Studien gehen davon aus, dass Eisen in niedrigeren Oxidationsstufen (+3) Teil der aktiven Struktur ist. In unserem Fall konnten wir jedoch Eisen in Oxidationsstufen größer als 4 nachweisen, und außerdem zeigen, dass sich Bindungsabstände deutlich verkürzt haben. Damit können wir das katalytisch aktive Zentrum deutlich genauer verstehen", so Menezes.

Elektrokatalysatoren ermöglichen den Ladungstransfer vom Substrat (hier Wasser) zu den Elektroden, was meist mit einer Änderung der Oxidationsstufen der Übergangsmetalle einhergeht. Diese Veränderungen des Oxidationszustands sind jedoch manchmal zu schnell, um erkannt zu werden. Dies macht es schwierig, das Funktionsprinzip des Katalysators zu verstehen, insbesondere wenn er zwei potenziell aktive Elemente wie Eisen und Kobalt enthält. „Wir hoffen, dass die detaillierte elektronische und strukturelle Beschreibung wesentlich zur Verbesserung von OER-Katalysatoren beitragen kann", sagt Menezes.

 

Anmerkung: An dem Team waren Wissenschaftler*innen des Helmholtz-Zentrum Berlin, der Technischen Universität Berlin und der Freien Universität Berlin beteiligt. Die Röntgenabsorptionsspektroskopie wurde an der Beamline KMC-3 bei BESSY II durchgeführt.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
    Science Highlight
    21.10.2025
    BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
    Erstmals ist es einem Team an BESSY II gelungen, experimentell eindimensionale elektronische Eigenschaften in einem Material nachzuweisen. Die Proben bestanden aus kurzen Ketten aus Phosphoratomen, die sich auf einem Silbersubstrat selbst organisiert in bestimmten Winkeln bilden. Durch eine raffinierte Auswertung gelang es, die Beiträge von unterschiedlich ausgerichteten Ketten voneinander zu trennen und zu zeigen, dass die elektronischen Eigenschaften tatsächlich einen eindimensionalen Charakter besitzen. Berechnungen zeigten darüber hinaus, dass ein spannender Phasenübergang zu erwarten ist. Während das Material aus einzelnen Ketten halbleitend ist, wäre eine sehr dichte Kettenstruktur metallisch.
  • Ein innerer Kompass für Meereslebewesen im Paläozän
    Science Highlight
    20.10.2025
    Ein innerer Kompass für Meereslebewesen im Paläozän
    Vor Jahrmillionen produzierten einige Meeresorganismen mysteriöse Magnetpartikel von ungewöhnlicher Größe, die heute als Fossilien in Sedimenten zu finden sind. Nun ist es einem internationalen Team gelungen, die magnetischen Domänen auf einem dieser „Riesenmagnetfossilien” mit einer raffinierten Methode an der Diamond-Röntgenquelle zu kartieren. Ihre Analyse zeigt, dass diese Partikel es den Organismen ermöglicht haben könnten, winzige Schwankungen sowohl in der Richtung als auch in der Intensität des Erdmagnetfelds wahrzunehmen. Dadurch konnten sie sich verorten und über den Ozean navigieren. Die neue Methode eignet sich auch, um zu testen, ob bestimmte Eisenoxidpartikel in Marsproben tatsächlich biogenen Ursprungs sind.
  • Was vibrierende Moleküle über die Zellbiologie verraten
    Science Highlight
    16.10.2025
    Was vibrierende Moleküle über die Zellbiologie verraten
    Mit Infrarot-Vibrationsspektroskopie an BESSY II lassen sich hochaufgelöste Karten von Molekülen in lebenden Zellen und Zellorganellen in ihrer natürlichen wässrigen Umgebung erstellen, zeigt eine neue Studie von einem Team aus HZB und Humboldt-Universität zu Berlin. Die Nano-IR-Spektroskopie mit SNOM an der IRIS-Beamline eignet sich, um winzige biologische Proben zu untersuchen und Infrarotbilder der Molekülschwingungen mit Nanometer-Auflösung zu erzeugen. Es ist sogar möglich, 3D-Informationen, also Infrarot-Tomogramme, aufzuzeichnen. Um das Verfahren zu testen, hat das Team Fibroblasten auf einer hochtransparenten SiC-Membran gezüchtet und in vivo untersucht. Die Methode ermöglicht neue Einblicke in die Zellbiologie.