Grüner Wasserstoff: Wie photoelektrochemische Zellen wettbewerbsfähig werden könnten

Die photoelektrochemische Zelle: Sonnenlicht erzeugt in der mit Katalysator beschichteten Solarzelle (rechts) eine Photospannung, die Wassermolek&uuml;le spaltet. An der linken Elektrode entsteht Wasserstoff, auf der rechten Seite Sauerstoff. Ein Teil des H<sub>2</sub> reagiert mit&nbsp; Itacons&auml;ure (IA) weiter zu wertvoller Methylbernsteins&auml;ure (MSA).

Die photoelektrochemische Zelle: Sonnenlicht erzeugt in der mit Katalysator beschichteten Solarzelle (rechts) eine Photospannung, die Wassermoleküle spaltet. An der linken Elektrode entsteht Wasserstoff, auf der rechten Seite Sauerstoff. Ein Teil des H2 reagiert mit  Itaconsäure (IA) weiter zu wertvoller Methylbernsteinsäure (MSA). © M. Künsting / HZB

Mit Sonnenlicht lässt sich grüner Wasserstoff in photoelektrochemischen Zellen (PEC) direkt aus Wasser erzeugen. Bisher waren Systeme, die auf diesem 'direkten Ansatz' basieren, energetisch nicht wettbewerbsfähig. Die Bilanz ändert sich jedoch, sobald ein Teil des Wasserstoffs in PEC-Zellen in-situ für erwünschte Reaktionen genutzt wird. Dadurch lassen sich wertvolle Chemikalien für die chemische und pharmazeutische Industrie produzieren. Die Zeit für die Energie-Rückgewinnung des direkten Ansatztes mit der PEC-Zelle kann damit drastisch verkürzt werden, zeigt eine neue Studie aus dem HZB.

 

Wasserstoff kann durch Elektrolyse von Wasser hergestellt werden, im Idealfall mit Strom aus Windkraft oder Solarmodulen. Dieser "grüne" Wasserstoff soll eine wichtige Rolle im Energiesystem der Zukunft spielen. In den letzten zehn Jahren hat die solare Wasserspaltung erhebliche Fortschritte gemacht: Die besten Elektrolyseure, die die benötigte Spannung aus PV-Modulen oder Windkraft beziehen, erreichen bereits Wirkungsgrade von bis zu 30 %. Dies ist der indirekte Ansatz.

Direkter Ansatz in der PEC-Zelle

Am HZB-Institut für Solare Brennstoffe arbeiten mehrere Teams an einem direkten Ansatz zur solaren Wasserspaltung: Sie entwickeln Photoelektroden, die Sonnenlicht in elektrische Energie umwandeln, außerdem in wässrigen Lösungen stabil sind und die Wasserspaltung katalytisch fördern. Diese Photoelektroden bestehen aus Lichtabsorbern, die mit Katalysatormaterialien beschichtet sind und die aktive Komponente einer photoelektrochemischen Zelle (PEC) bilden. Die besten PEC-Zellen, die auf kostengünstigen und stabilen Metalloxidabsorbern basieren, erreichen bereits Wirkungsgrade von nahezu 10 %. Obwohl PEC-Zellen immer noch weniger effizient sind als PV-getriebene Elektrolyseure, haben sie auch einige Vorteile: So lässt sich in PEC-Zellen die Wärme des Sonnenlichts nutzen, um die Reaktionen zu beschleunigen. Und da die Stromdichten bei diesem Ansatz zehn- bis hundertmal niedriger sind, können teure Katalysatoren durch preiswerte Katalysatoren aus reichlich vorhandenen Materialien ersetzt werden.

Noch nicht wettbewerbsfähig

Bisher haben technisch-ökonomische Analysen (TEA) und Nettoenergiebewertungen (NEA) gezeigt, dass das PEC-Konzept für eine großtechnische Umsetzung noch nicht wettbewerbsfähig ist. Wasserstoff aus PEC-Systemen kostet heute etwa 10 USD/kg, etwa sechsmal mehr als Wasserstoff aus der Dampfreformierung von fossilem Methan (1,5 USD/kg). Außerdem ist der kumulative Energiebedarf für die PEC-Wasserspaltung schätzungsweise vier- bis zwanzigmal höher als für die Wasserstofferzeugung mit Windturbinen und Elektrolyseuren.

Die Idee: wertvolle Chemikalien 

„Hier wollten wir einen neuen Ansatz einbringen", sagt Dr. Fatwa Abdi vom HZB-Institut für Solare Brennstoffe. Im Rahmen des UniSysCat-Exzellenznetzwerks mit Prof. Reinhard Schomäcker und Prof. Roel van de Krol untersuchte Abdis Gruppe, wie sich die Bilanz verändert, wenn ein Teil des produzierten Wasserstoffs im selben Reaktor (in situ) mit Itaconsäure (IA) zu Methylbernsteinsäure (MSA) weiterreagiert.

Energie-Rückgewinnungszeiten

Sie berechneten zunächst, wie viel Energie zur Herstellung der PEC-Zelle aus Lichtabsorbern, Katalysatormaterialien und anderen Materialien wie Glas benötigt wird und wie lange sie funktionieren muss, um diese Energie in Form von chemischer Energie als Wasserstoff oder MSA zu erzeugen. Für Wasserstoff allein beträgt diese „energetische Amortisationszeit" etwa 17 Jahre, wenn man von einem bescheidenen Wirkungsgrad von 5 % bei der Umwandlung von Sonnenenergie in Wasserstoff ausgeht. Wenn nur 2 % des erzeugten Wasserstoffs für die Umwandlung von IA in MSA verwendet werden, halbiert sich die energetische Amortisationszeit, und wenn 30 % des Wasserstoffs in MSA umgewandelt werden, kann die Produktionsenergie nach nur 2 Jahren wiedergewonnen werden. „Das macht das Verfahren viel nachhaltiger und wettbewerbsfähiger", sagt Abdi. Ein Grund: Die für die Synthese von MSA in einer solchen PEC-Zelle benötigte Energie beträgt nur ein Siebtel des Energiebedarfs herkömmlicher MSA-Produktionsverfahren.

Ein flexibles System

„Das System ist flexibel und kann auch andere wertvolle Chemikalien herstellen, die derzeit am Standort benötigt werden", erklärt Abdi. Der Vorteil ist, dass die festen Komponenten der PEC-Anlage, die den größten Teil der Investitionskosten ausmachen, gleichbleiben; lediglich der Hydrierkatalysator und das Einsatzmaterial müssen ausgetauscht werden. „Dieser Ansatz bietet eine Möglichkeit, die Produktionskosten für grünen Wasserstoff erheblich zu senken und erhöht die wirtschaftliche Machbarkeit der PEC-Technologie", sagt Abdi. „Wir haben das Verfahren sorgfältig durchdacht, und der nächste Schritt besteht darin, im Labor zu testen, wie gut die gleichzeitige Herstellung von Wasserstoff und MSA in der Praxis funktioniert."

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Grüne Herstellung von Hybridmaterialien als hochempfindliche Röntgendetektoren
    Science Highlight
    08.05.2025
    Grüne Herstellung von Hybridmaterialien als hochempfindliche Röntgendetektoren
    Neue organisch-anorganische Hybridmaterialien auf Basis von Wismut sind hervorragend als Röntgendetektoren geeignet, sie sind deutlich empfindlicher als handelsübliche Röntgendetektoren und langzeitstabil. Darüber hinaus können sie ohne Lösungsmittel durch Kugelmahlen hergestellt werden, einem umweltfreundlichen Syntheseverfahren, das auch in der Industrie genutzt wird. Empfindlichere Detektoren würden die Strahlenbelastung bei Röntgenuntersuchungen erheblich reduzieren.

  • Energiespeicher: BAM, HZB und HU Berlin planen gemeinsames Berlin Battery Lab
    Nachricht
    07.05.2025
    Energiespeicher: BAM, HZB und HU Berlin planen gemeinsames Berlin Battery Lab
    Die Bundesanstalt für Materialforschung und -prüfung (BAM), das Helmholtz-Zentrum Berlin (HZB) und die Humboldt-Universität zu Berlin (HU Berlin) haben ein Memorandum of Understanding (MoU) zur Gründung des Berlin Battery Lab unterzeichnet. Das Labor wird die Expertise der drei Institutionen bündeln, um die Entwicklung nachhaltiger Batterietechnologien voranzutreiben. Die gemeinsame Forschungsinfrastruktur soll auch der Industrie für wegweisende Projekte in diesem Bereich offenstehen.
  • BESSY II: Einblick in ultraschnelle Spinprozesse mit Femtoslicing
    Science Highlight
    05.05.2025
    BESSY II: Einblick in ultraschnelle Spinprozesse mit Femtoslicing
    Einem internationalen Team ist es an BESSY II erstmals gelungen, einen besonders schnellen Prozess im Inneren eines magnetischen Schichtsystems, eines Spinventils, aufzuklären: An der Femtoslicing-Beamline von BESSY II konnten sie die ultraschnelle Entmagnetisierung durch spinpolarisierte Stromimpulse beobachten. Die Ergebnisse helfen bei der Entwicklung von spintronischen Bauelementen für die schnellere und energieeffizientere Verarbeitung und Speicherung von Information. An der Zusammenarbeit waren Teams der Universität Straßburg, des HZB, der Universität Uppsala sowie weiterer Universitäten beteiligt.