Lithium-Schwefel-Feststoffbatterien: Ladungstransport direkt beobachtet

Die Ver&auml;nderung der Neutronend&auml;mpfung in der Kathode zeigt, wo sich Lithium anreichert: oben beim Entladen, unten beim Aufladen. d<sub>0</sub> ist die Grenze zum Feststoff-Elektrolyten, d<sub>max</sub> ist die Grenze zwischen Kathode und Stromkollektor.

Die Veränderung der Neutronendämpfung in der Kathode zeigt, wo sich Lithium anreichert: oben beim Entladen, unten beim Aufladen. d0 ist die Grenze zum Feststoff-Elektrolyten, dmax ist die Grenze zwischen Kathode und Stromkollektor. © HZB

Der Aufbau der Feststoff-Batterie. Die Anode besteht aus Li/In, der Feststoff-Elektrolyt ist Li<sub>6</sub>PS<sub>5</sub>Cl und die Verbundkathode ist S/C/Li<sub>6</sub>PS<sub>5</sub>Cl.

Der Aufbau der Feststoff-Batterie. Die Anode besteht aus Li/In, der Feststoff-Elektrolyt ist Li6PS5Cl und die Verbundkathode ist S/C/Li6PS5Cl. © HZB

3-D-Tomographie-Bilder des entladenen (oben) und des wieder aufgeladenen Zustands (Mitte), sowie die Differenz zwischen beiden (unten), die anzeigt, wo sich die mobilen Lithium-Ionen (gr&uuml;n) befinden.

3-D-Tomographie-Bilder des entladenen (oben) und des wieder aufgeladenen Zustands (Mitte), sowie die Differenz zwischen beiden (unten), die anzeigt, wo sich die mobilen Lithium-Ionen (grün) befinden. © HZB

Lithium-Schwefel-Feststoffbatterien bieten im Vergleich zu herkömmlichen Lithium-Ionen-Batterien das Potenzial für eine wesentlich höhere Energiedichte und mehr Sicherheit. Allerdings ist die Leistungsfähigkeit von Feststoffbatterien derzeit noch unzureichend, was vor allem an sehr langen Ladezeiten liegt - und das, obwohl sie theoretisch eine besonders schnelle Aufladung ermöglichen sollten. Eine neue Studie des HZB zeigt nun, dass die Hauptursache dafür die sehr schleppende Einwanderung von Lithium-Ionen in die Verbundkathode ist.

Das Team konstruierte eine spezielle Zelle, um den Transport von Lithium-Ionen zwischen Anode und Kathode in einer Lithium-Schwefel-Feststoffbatterie zu beobachten. Da sich Lithium mit Röntgenmethoden kaum nachweisen lässt, untersuchten die HZB-Physiker Dr. Robert Bradbury und Dr. Ingo Manke die Probezelle mit Neutronen, die extrem empfindlich auf Lithium reagieren. Zusammen mit Dr. Nikolay Kardjilov, HZB, nutzten sie Neutronenradiographie und Neutronentomographie am CONRAD2-Instrument an der Berliner Neutronenquelle BER II1. Auch Gruppen aus Gießen (JLU), Braunschweig (TUBS) und Jülich (FZJ) waren an den Arbeiten beteiligt.

Lithium-Ionen beim Wandern

„Wir haben jetzt eine viel bessere Vorstellung davon, was die Leistung der Batterie einschränkt", sagt Bradbury: „Aus den Daten der operando Neutronenradiographie sehen wir, dass sich eine Reaktionsfront von Lithium-Ionen durch die Verbundkathode ausbreitet, was den negativen Einfluss der niedrigen effektiven Ionenleitfähigkeit bestätigt." Darüber hinaus zeigen die 3D-Neutronentomographie-Bilder, dass sich das eingeschlossene Lithium während des Aufladens in der Nähe des Stromabnehmers konzentriert. „Dies führt zu einer verminderten Kapazität, da nur ein Teil des Lithiums beim Aufladen der Batterie zurücktransportiert wird."

Die beobachtete Lithiumverteilung stimmt sehr gut mit einer Modellrechnung auf Basis der Theorie der porösen Elektroden überein: „Was wir hier in den Neutronenbilddaten beobachten, korreliert gut mit den relevanten elektronischen und ionischen Leitfähigkeitsbedingungen aus dem Modell", sagt Bradbury.

Der Flaschenhals ist identifiziert

Diese Ergebnisse machen auf einen bisher übersehenen Entwicklungsengpass für Feststoffbatterien aufmerksam: Der langsame Ionentransport begrenzt die Leistung. Die Herausforderung besteht nun darin, einen schnelleren Ionentransport innerhalb des Kathodenverbunds zu ermöglichen. „Ohne eine direkte Visualisierung der Reaktionsfront innerhalb des Kathodenverbunds wäre dieser Effekt möglicherweise unbemerkt geblieben, obwohl er für die Entwicklung von Festkörperbatterien von großer Bedeutung ist", sagt Bradbury.

 

Fußnote 1: Die Experimente fanden Ende 2019 statt, bevor die Neutronenquelle BER II abgeschaltet wurde. Die Arbeiten werden zukünftig im Rahmen der gemeinsamen Forschungsgruppe „NI-Matters“ zwischen dem HZB, dem Institut Laue-Langevin (Frankreich) und der Universität Grenoble (Frankreich) weiter fortgeführt.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Iridiumfreie Katalysatoren für die saure Wasserelektrolyse untersucht
    Science Highlight
    13.08.2025
    Iridiumfreie Katalysatoren für die saure Wasserelektrolyse untersucht
    Wasserstoff wird künftig eine wichtige Rolle spielen, als Brennstoff und als Rohstoff für die Industrie. Um jedoch relevante Mengen an Wasserstoff zu produzieren, muss Wasserelektrolyse im Multi-Gigawatt-Maßstab machbar werden. Ein Engpass sind die benötigten Katalysatoren, insbesondere Iridium ist ein extrem seltenes Element. Eine internationale Kooperation hat daher Iridiumfreie Katalysatoren für die saure Wasserelektrolyse untersucht, die auf dem Element Kobalt basieren. Durch Untersuchungen, unter anderem am LiXEdrom an der Berliner Röntgenquelle BESSY II, konnten sie Prozesse bei der Wasserelektrolyse in einem Kobalt-Eisen-Blei-Oxid-Material als Anode aufklären. Die Studie ist in Nature Energy publiziert.
  • MXene als „Rahmen“ für zweidimensionale Wasserfilme zeigt neue Eigenschaften
    Science Highlight
    13.08.2025
    MXene als „Rahmen“ für zweidimensionale Wasserfilme zeigt neue Eigenschaften
    Ein internationales Team unter Leitung von Dr. Tristan Petit und Prof. Yury Gogotsi hat MXene mit eingeschlossenem Wasser und Ionen an der BESSY II untersucht. Dabei ging das Wasser mit steigender Temperatur vom Zustand als lokalisierte Eiskluster in einen quasi-zweidimensionalen Wasserfilm über. Das Team entdeckte dabei, dass diese strukturellen Veränderungen des eingeschlossenen Wassers im MXene einen reversiblen Phasenübergang bewirken: vom Metall zum Halbleiter. Dies könnte die Entwicklung neuartiger Bauelemente oder Sensoren auf Basis von MXenen ermöglichen.
  • Lithium-Schwefel-Batterien mit wenig Elektrolyt: Problemzonen identifiziert
    Science Highlight
    12.08.2025
    Lithium-Schwefel-Batterien mit wenig Elektrolyt: Problemzonen identifiziert
    Mit einer zerstörungsfreien Methode hat ein Team am HZB erstmals Lithium-Schwefel-Batterien im praktischen Pouchzellenformat untersucht, die mit besonders wenig Elektrolyt-Flüssigkeit auskommen. Mit operando Neutronentomographie konnten sie in Echtzeit visualisieren, wie sich der flüssige Elektrolyt während des Ladens und Entladens über mehrere Schichten verteilt und die Elektroden benetzt. Diese Erkenntnisse liefern wertvolle Einblicke in die Mechanismen, die zum Versagen der Batterie führen können, und sind hilfreich für die Entwicklung kompakter Li-S-Batterien mit hoher Energiedichte.