Schnelle und flexible Solarenergie aus dem Drucker

In der „Solarfabrik der Zukunft“ am HI ERN werden druckbare organische Solarmodule erforscht.

In der „Solarfabrik der Zukunft“ am HI ERN werden druckbare organische Solarmodule erforscht. © Kurt Fuchs/EnCN

Im Reallabor für Agri Food-Energy-Park am Forschungszentrum Jülich werden neue Konzepte für die Agri-Photovoltaik erprobt.

Im Reallabor für Agri Food-Energy-Park am Forschungszentrum Jülich werden neue Konzepte für die Agri-Photovoltaik erprobt. © Christina Kuchendorf/Forschungszentrum Jülich

Fassadenintegrierte Photovoltaik am Reallabor für Bauwerkintegrierte Photovoltik (BIPV) am HZB in Berlin-Adlershof. Im Reallabor werden neue Konzepte für BIPV unter wissenschaftlicher Begleitung erprobt.

Fassadenintegrierte Photovoltaik am Reallabor für Bauwerkintegrierte Photovoltik (BIPV) am HZB in Berlin-Adlershof. Im Reallabor werden neue Konzepte für BIPV unter wissenschaftlicher Begleitung erprobt. © Niklas Albinius/HZB

Leichter, flexibler und anpassbar - die Innovationsplattform Solar TAP entwickelt innovative Lösungen für Photovoltaik-Anwendungen. Ziel ist es, bereits genutzte Flächen in Landwirtschaft, Gebäudesektor und Verkehr zusätzlich für den Ausbau der Solarenergie mit Solarzellen aus dem Drucker nutzbar zu machen.

Erneuerbare Energien sind essenziell für ein Gelingen der Energiewende und die angestrebte Unabhängigkeit vom Import fossiler Energieträger. Deren Ausbau muss daher zügig und massiv vorangetrieben werden. Eine wichtige Säule hierfür ist die Photovoltaik (PV) – die Energie aus Sonne: Sie hat unter den erneuerbaren Energien den niedrigsten ökologischen Fußabdruck, erzeugt also deutlich mehr Energie als zu ihrer Herstellung benötigt wird.

Bis 2040 soll eine Leistung von ca. 330 Gigawatt in Deutschland zugebaut werden. Theoretisch wäre dies sogar ohne den Neubau großflächiger Solarparks möglich: dank flexibler und effizienter PV-Anlagen, die Flächen in der Landwirtschaft oder im Gebäudesektor nutzen, um zusätzlich Strom aus Sonne zu gewinnen. Das Potential hierfür ist groß: Allein die Agrarflächen in Deutschland bieten die technische Möglichkeit, um das Zehnfache dieser Leistung, bis zu 3 Terawatt, zur Stromerzeugung beizutragen. In bestehende Fassaden integrierte Solarzellen könnten bis zu 1 Terawatt Solarstrom erzeugen – beispielsweise um künftig Elektroautos dezentral und mobil mit Strom zu versorgen. Doch bislang werden gerade einmal weniger als 0,1 Prozent der Fassadenflächen für PV genutzt.

Mehrfachnutzen: Neue Potentiale für den Ausbau der Sonnenenergie

Photovoltaik benötigt Fläche um Strom zu produzieren. Darüber hinaus kann PV nicht „nur“ grüne Energie erzeugen, sondern in bestimmten Anwendungen auch weitere Vorteile bieten und somit einen mehrfachen Nutzen (engl. „Multi-Benefit“) für die jeweilige Anwendung erzeugen. Für diese „Multi-Benefit PV“ sind Solarzellen, die auf gedruckten innovativen PV-Technologien basieren besonders geeignet. Sie sind gut formbar, leicht und flexibel und können hinsichtlich Farbe und Transparenz frei angepasst werden. Auch die Module können in vielerlei Formen und Ausführungen gestaltet werden – je nach Anwendungsbedarf. Die Zellen lassen sich auf Materialien wie Kunststoff, Glas oder Metall aufbringen, die hierdurch eine weitere Funktionalität bekommen. Dadurch entstehen zum Beispiel in der Landwirtschaft oder im Gebäudesektor neue Potenziale für den Ausbau der PV, aber auch im Verkehrssektor könnten neue Möglichkeiten erschlossen werden. Solarenergie wird so vielerorts nutzbar und kann in bestehende Strukturen integriert werden.

Aus dem Labor in die Anwendung: Innovatives Partnernetzwerk treibt Entwicklung voran

In der kürzlich gestarteten Innovationsplattform Solar TAP („Solar Technology Acceleration Platform for emerging Photovoltaics“) sollen gemeinsam mit Industriepartnern die Technologien für diese neuen Multi-Benefit-PV-Anwendungen entwickelt werden. Die Ergebnisse wollen das Forschungszentrum Jülich, das Helmholtz-Zentrum Berlin und das Karlsruher Institut für Technologie über die Plattform schnell und unkompliziert Industrie, Gesellschaft und Endverbraucher zugänglich machen.

Unter der Koordination des Helmholtz-Institutes Erlangen-Nürnberg für Erneuerbare Energien (HI ERN), einer Außenstelle des Forschungszentrums Jülich, bilden die drei Forschungseinrichtungen eine geschlossene Wertschöpfungskette, in der weltweit führende Labore und Expert:innen der Helmholtz-Gemeinschaft mitwirken.

Um diese neuen PV-Lösungen zügig marktreif entwickeln zu können, ist Solar TAP ein offenes Angebot an die Industrie: Zentral ist der Technologietransfer in ein starkes Netzwerk aus Unternehmen wie Materialzulieferer, Gerätebauer, Produzenten und Anwender, die sich im Bereich der Multi-Benefit-PV etablieren wollen. Eine gemeinsame Roadmap bildet den Rahmen des Austausches zwischen Wissenschaft und Industrie und soll den Realbezug der Entwicklungen sicherstellen. Begleitet wird die Vernetzung in Reallaboren, in denen diese neuen Technologien nicht nur entwickelt, sondern auch demonstriert werden.

Interview: Solarzellen aus dem Drucker für flexible Sonnenenergie

Im Interview erklären Prof. Christoph Brabec und Dr. Jens Hauch (beide HI ERN) sowie Prof. Eva Unger vom Helmholtz-Zentrum Berlin (HZB) und Prof. Ulrich Lemmer vom Karlsruher Institut für Technologie (KIT), wie weit die Technik aktuell ist und welche Anwendungen sie dabei konkret im Blick haben.

Projekthintergrund

Solar TAP ist eine von insgesamt drei neuen Innovationsplattformen, die durch die Helmholtz-Gemeinschaft mit insgesamt 40 Millionen Euro aus dem Pakt für Forschung und Innovation gefördert werden. Ziel ist es, neue Strukturen und Möglichkeiten für den Technologietransfer und die gemeinsame Nutzung von Großgeräten, Forschungsinfrastrukturen und Daten zu schaffen.

Die Förderung für die Innovationsplattform Solar TAP beträgt 15,1 Millionen Euro für die 3-jährige Aufbauphase, die ab März 2023 gefördert wird. In enger Kooperation mit starken Partnern aus Wirtschaft und Gesellschaft wird die Plattform Transfer und Innovation in der Helmholtz-Gemeinschaft stärken und langfristig angewandte Lösungen in den Markt bringen.

FZJ

  • Link kopieren

Das könnte Sie auch interessieren

  • Grüne Herstellung von Hybridmaterialien als hochempfindliche Röntgendetektoren
    Science Highlight
    08.05.2025
    Grüne Herstellung von Hybridmaterialien als hochempfindliche Röntgendetektoren
    Neue organisch-anorganische Hybridmaterialien auf Basis von Wismut sind hervorragend als Röntgendetektoren geeignet, sie sind deutlich empfindlicher als handelsübliche Röntgendetektoren und langzeitstabil. Darüber hinaus können sie ohne Lösungsmittel durch Kugelmahlen hergestellt werden, einem umweltfreundlichen Syntheseverfahren, das auch in der Industrie genutzt wird. Empfindlichere Detektoren würden die Strahlenbelastung bei Röntgenuntersuchungen erheblich reduzieren.

  • Energiespeicher: BAM, HZB und HU Berlin planen gemeinsames Berlin Battery Lab
    Nachricht
    07.05.2025
    Energiespeicher: BAM, HZB und HU Berlin planen gemeinsames Berlin Battery Lab
    Die Bundesanstalt für Materialforschung und -prüfung (BAM), das Helmholtz-Zentrum Berlin (HZB) und die Humboldt-Universität zu Berlin (HU Berlin) haben ein Memorandum of Understanding (MoU) zur Gründung des Berlin Battery Lab unterzeichnet. Das Labor wird die Expertise der drei Institutionen bündeln, um die Entwicklung nachhaltiger Batterietechnologien voranzutreiben. Die gemeinsame Forschungsinfrastruktur soll auch der Industrie für wegweisende Projekte in diesem Bereich offenstehen.
  • BESSY II: Einblick in ultraschnelle Spinprozesse mit Femtoslicing
    Science Highlight
    05.05.2025
    BESSY II: Einblick in ultraschnelle Spinprozesse mit Femtoslicing
    Einem internationalen Team ist es an BESSY II erstmals gelungen, einen besonders schnellen Prozess im Inneren eines magnetischen Schichtsystems, eines Spinventils, aufzuklären: An der Femtoslicing-Beamline von BESSY II konnten sie die ultraschnelle Entmagnetisierung durch spinpolarisierte Stromimpulse beobachten. Die Ergebnisse helfen bei der Entwicklung von spintronischen Bauelementen für die schnellere und energieeffizientere Verarbeitung und Speicherung von Information. An der Zusammenarbeit waren Teams der Universität Straßburg, des HZB, der Universität Uppsala sowie weiterer Universitäten beteiligt.