Spintronik an BESSY II: Domänenwände in magnetischen Nanodrähten

Diese magnetempfindlichen Abbildungen entstanden am HZB: a) XAS-Bild des Nanodraht-Kreuzes. Röntgenstrahl und Magnetfeld sind entlang der (vertikalen) Richtung des Nanodrahtes ausgerichtet (grüner Pfeil). b-f) XMCD-Bilder des Kreuzes für verschiedene angelegte Felder.

Diese magnetempfindlichen Abbildungen entstanden am HZB: a) XAS-Bild des Nanodraht-Kreuzes. Röntgenstrahl und Magnetfeld sind entlang der (vertikalen) Richtung des Nanodrahtes ausgerichtet (grüner Pfeil). b-f) XMCD-Bilder des Kreuzes für verschiedene angelegte Felder. © HZB

Magnetische Domänenwände sorgen für elektrischen Widerstand, da es für Elektronenspins schwierig ist, ihrer magnetischen Struktur zu folgen. Dieses Phänomen könnte in spintronischen Bauelementen genutzt werden, bei denen der elektrische Widerstand je nach Vorhandensein oder Fehlen einer Domänenwand variieren kann. Eine besonders interessante Materialklasse sind Halbmetalle wie La2/3Sr1/3MnO3 (LSMO). Sie weisen vollständige Spinpolarisation auf. Allerdings war der Widerstand einer einzelnen Domänenwand in Halbmetallen bisher noch nicht bestimmt worden. Nun hat ein Team aus Spanien, Frankreich und Deutschland eine einzelne Domänenwand auf einem LSMO-Nanodraht erzeugt und Widerstandsänderungen gemessen, die 20mal größer sind als bei normalen Ferromagneten wie Kobalt.

 

Die magnetische Textur, die magnetischen Domänenwänden eigen ist, birgt Potenzial für spintronische Anwendungen. Der elektrische Widerstand in Ferromagneten hängt davon ab, ob Domänenwände vorhanden sind oder nicht. Dieser binäre Effekt (bekannt als Domänenwand-Magnetowiderstand) könnte zur Codierung von Informationen in spintronischen Speichergeräten genutzt werden. Ihre Nutzung wird jedoch durch die geringen Änderungen des Widerstands behindert, die bei normalen Ferromagneten beobachtet werden. Eine besonders interessante Klasse von Materialien sind Manganit-Perowskite wie La2/3Sr1/3MnO3 (LSMO). Diese Verbindungen weisen nur eine Art von Spin auf (vollständige Spinpolarisation), was potenziell zu Domänenwand-Magnetowiderstandseffekten führen könnte, die groß genug sind, um in einer neuen Generation von spintronischen Sensoren und Injektoren genutzt zu werden.

Trotz dieser Perspektive gibt es große Diskrepanzen bei den berichteten Werten des Domänenwand-Magnetowiderstands für dieses System. Ein Team aus Spanien, Frankreich und Deutschland hat nun Bauelemente aus Nanodrähten hergestellt, die die Keimbildung einzelner magnetischer Domänenwände ermöglichen. Magnetotransportmessungen zeigen, dass das Vorhandensein einer Domänenwand zu einer Erhöhung des elektrischen Widerstands um bis zu 12 % führt. In absoluten Zahlen ist die beobachtete Widerstandsänderung 20mal größer als in einem normalen Ferromagneten wie Kobalt.

Diese Arbeit ist das Ergebnis einer langjährigen Zusammenarbeit, die Filmwachstum und Nanofabrikation, Transportmessungen, Kontaktmikroskopie (MFM), theoretische Simulationen und den Einsatz fortschrittlicher Charakterisierungstechniken wie der Röntgen-Photoemissions-Elektronenmikroskopie umfasst. Die Kombination einer Vielzahl unterschiedlicher Techniken ermöglicht einen facettenreichen Blick auf ein komplexes Problem, der neue Einblicke in eine heftig diskutierte offene Frage ermöglicht hat.

Sergio Valencia

  • Link kopieren

Das könnte Sie auch interessieren

  • Grüne Herstellung von Hybridmaterialien als hochempfindliche Röntgendetektoren
    Science Highlight
    08.05.2025
    Grüne Herstellung von Hybridmaterialien als hochempfindliche Röntgendetektoren
    Neue organisch-anorganische Hybridmaterialien auf Basis von Wismut sind hervorragend als Röntgendetektoren geeignet, sie sind deutlich empfindlicher als handelsübliche Röntgendetektoren und langzeitstabil. Darüber hinaus können sie ohne Lösungsmittel durch Kugelmahlen hergestellt werden, einem umweltfreundlichen Syntheseverfahren, das auch in der Industrie genutzt wird. Empfindlichere Detektoren würden die Strahlenbelastung bei Röntgenuntersuchungen erheblich reduzieren.

  • Energiespeicher: BAM, HZB und HU Berlin planen gemeinsames Berlin Battery Lab
    Nachricht
    07.05.2025
    Energiespeicher: BAM, HZB und HU Berlin planen gemeinsames Berlin Battery Lab
    Die Bundesanstalt für Materialforschung und -prüfung (BAM), das Helmholtz-Zentrum Berlin (HZB) und die Humboldt-Universität zu Berlin (HU Berlin) haben ein Memorandum of Understanding (MoU) zur Gründung des Berlin Battery Lab unterzeichnet. Das Labor wird die Expertise der drei Institutionen bündeln, um die Entwicklung nachhaltiger Batterietechnologien voranzutreiben. Die gemeinsame Forschungsinfrastruktur soll auch der Industrie für wegweisende Projekte in diesem Bereich offenstehen.
  • BESSY II: Einblick in ultraschnelle Spinprozesse mit Femtoslicing
    Science Highlight
    05.05.2025
    BESSY II: Einblick in ultraschnelle Spinprozesse mit Femtoslicing
    Einem internationalen Team ist es an BESSY II erstmals gelungen, einen besonders schnellen Prozess im Inneren eines magnetischen Schichtsystems, eines Spinventils, aufzuklären: An der Femtoslicing-Beamline von BESSY II konnten sie die ultraschnelle Entmagnetisierung durch spinpolarisierte Stromimpulse beobachten. Die Ergebnisse helfen bei der Entwicklung von spintronischen Bauelementen für die schnellere und energieeffizientere Verarbeitung und Speicherung von Information. An der Zusammenarbeit waren Teams der Universität Straßburg, des HZB, der Universität Uppsala sowie weiterer Universitäten beteiligt.