Spintronik an BESSY II: Domänenwände in magnetischen Nanodrähten

Diese magnetempfindlichen Abbildungen entstanden am HZB: a) XAS-Bild des Nanodraht-Kreuzes. Röntgenstrahl und Magnetfeld sind entlang der (vertikalen) Richtung des Nanodrahtes ausgerichtet (grüner Pfeil). b-f) XMCD-Bilder des Kreuzes für verschiedene angelegte Felder.

Diese magnetempfindlichen Abbildungen entstanden am HZB: a) XAS-Bild des Nanodraht-Kreuzes. Röntgenstrahl und Magnetfeld sind entlang der (vertikalen) Richtung des Nanodrahtes ausgerichtet (grüner Pfeil). b-f) XMCD-Bilder des Kreuzes für verschiedene angelegte Felder. © HZB

Magnetische Domänenwände sorgen für elektrischen Widerstand, da es für Elektronenspins schwierig ist, ihrer magnetischen Struktur zu folgen. Dieses Phänomen könnte in spintronischen Bauelementen genutzt werden, bei denen der elektrische Widerstand je nach Vorhandensein oder Fehlen einer Domänenwand variieren kann. Eine besonders interessante Materialklasse sind Halbmetalle wie La2/3Sr1/3MnO3 (LSMO). Sie weisen vollständige Spinpolarisation auf. Allerdings war der Widerstand einer einzelnen Domänenwand in Halbmetallen bisher noch nicht bestimmt worden. Nun hat ein Team aus Spanien, Frankreich und Deutschland eine einzelne Domänenwand auf einem LSMO-Nanodraht erzeugt und Widerstandsänderungen gemessen, die 20mal größer sind als bei normalen Ferromagneten wie Kobalt.

 

Die magnetische Textur, die magnetischen Domänenwänden eigen ist, birgt Potenzial für spintronische Anwendungen. Der elektrische Widerstand in Ferromagneten hängt davon ab, ob Domänenwände vorhanden sind oder nicht. Dieser binäre Effekt (bekannt als Domänenwand-Magnetowiderstand) könnte zur Codierung von Informationen in spintronischen Speichergeräten genutzt werden. Ihre Nutzung wird jedoch durch die geringen Änderungen des Widerstands behindert, die bei normalen Ferromagneten beobachtet werden. Eine besonders interessante Klasse von Materialien sind Manganit-Perowskite wie La2/3Sr1/3MnO3 (LSMO). Diese Verbindungen weisen nur eine Art von Spin auf (vollständige Spinpolarisation), was potenziell zu Domänenwand-Magnetowiderstandseffekten führen könnte, die groß genug sind, um in einer neuen Generation von spintronischen Sensoren und Injektoren genutzt zu werden.

Trotz dieser Perspektive gibt es große Diskrepanzen bei den berichteten Werten des Domänenwand-Magnetowiderstands für dieses System. Ein Team aus Spanien, Frankreich und Deutschland hat nun Bauelemente aus Nanodrähten hergestellt, die die Keimbildung einzelner magnetischer Domänenwände ermöglichen. Magnetotransportmessungen zeigen, dass das Vorhandensein einer Domänenwand zu einer Erhöhung des elektrischen Widerstands um bis zu 12 % führt. In absoluten Zahlen ist die beobachtete Widerstandsänderung 20mal größer als in einem normalen Ferromagneten wie Kobalt.

Diese Arbeit ist das Ergebnis einer langjährigen Zusammenarbeit, die Filmwachstum und Nanofabrikation, Transportmessungen, Kontaktmikroskopie (MFM), theoretische Simulationen und den Einsatz fortschrittlicher Charakterisierungstechniken wie der Röntgen-Photoemissions-Elektronenmikroskopie umfasst. Die Kombination einer Vielzahl unterschiedlicher Techniken ermöglicht einen facettenreichen Blick auf ein komplexes Problem, der neue Einblicke in eine heftig diskutierte offene Frage ermöglicht hat.

Sergio Valencia

  • Link kopieren

Das könnte Sie auch interessieren

  • Susanne Nies in EU-Beratergruppe zu Green Deal berufen
    Nachricht
    12.11.2025
    Susanne Nies in EU-Beratergruppe zu Green Deal berufen
    Dr. Susanne Nies leitet am HZB das Projekt Green Deal Ukraina, das den Aufbau eines nachhaltigen Energiesystems in der Ukraine unterstützt. Die Energieexpertin wurde nun auch in die wissenschaftliche Beratergruppe der Europäischen Kommission berufen, um im Zusammenhang mit der Netto-Null-Zielsetzung (DG GROW) regulatorische Belastungen aufzuzeigen und dazu zu beraten.
  • Die Zukunft der Korallen – Was Röntgenuntersuchungen zeigen können
    Interview
    12.11.2025
    Die Zukunft der Korallen – Was Röntgenuntersuchungen zeigen können
    In diesem Sommer war es in allen Medien. Angetrieben durch die Klimakrise haben nun auch die Ozeane einen kritischen Punkt überschritten, sie versauern immer mehr. Meeresschnecken zeigen bereits erste Schäden, aber die zunehmende Versauerung könnte auch die kalkhaltigen Skelettstrukturen von Korallen beeinträchtigen. Dabei leiden Korallen außerdem unter marinen Hitzewellen und Verschmutzung, die weltweit zur Korallenbleiche und zum Absterben ganzer Riffe führen. Wie genau wirkt sich die Versauerung auf die Skelettbildung aus?

    Die Meeresbiologin Prof. Dr. Tali Mass von der Universität Haifa, Israel, ist Expertin für Steinkorallen. Zusammen mit Prof. Dr. Paul Zaslansky, Experte für Röntgenbildgebung an der Charité Berlin, untersuchte sie an BESSY II die Skelettbildung bei Babykorallen, die unter verschiedenen pH-Bedingungen aufgezogen wurden. Antonia Rötger befragte die beiden Experten online zu ihrer aktuellen Studie und der Zukunft der Korallenriffe. 

  • Langzeit-Stabilität von Perowskit-Solarzellen deutlich gesteigert
    Science Highlight
    07.11.2025
    Langzeit-Stabilität von Perowskit-Solarzellen deutlich gesteigert
    Perowskit-Solarzellen sind kostengünstig in der Herstellung und liefern viel Leistung pro Fläche. Allerdings sind sie bisher noch nicht stabil genug für den Langzeit-Einsatz. Nun hat ein internationales Team unter der Leitung von Prof. Dr. Antonio Abate durch eine neuartige Beschichtung der Grenzfläche zwischen Perowskitschicht und dem Top-Kontakt die Stabilität drastisch erhöht. Dabei stieg der Wirkungsgrad auf knapp 27 Prozent, was dem aktuellen state-of-the-art entspricht. Dieser hohe Wirkungsgrad nahm auch nach 1.200 Stunden im Dauerbetrieb nicht ab. An der Studie waren Forschungsteams aus China, Italien, der Schweiz und Deutschland beteiligt. Sie wurde in Nature Photonics veröffentlicht.