Spintronics at BESSY II: Domain walls in magnetic nanowires

<p class="MsoCaption">Magnetic sensitive PEEM images obtained at HZB: a) XAS image of the crossed nanowires. X-ray beam and magnetic field are aligned along the nanowire(vertical) direction (green arrow). b-f) XMCD images of the cross for different applied fields.&nbsp;

Magnetic sensitive PEEM images obtained at HZB: a) XAS image of the crossed nanowires. X-ray beam and magnetic field are aligned along the nanowire(vertical) direction (green arrow). b-f) XMCD images of the cross for different applied fields.  © HZB

Magnetic domains walls are known to be a source of electrical resistance due to the difficulty for transport electron spins to follow their magnetic texture. This phenomenon holds potential for utilization in spintronic devices, where the electrical resistance can vary based on the presence or absence of a domain wall. A particularly intriguing class of materials are half metals such as La2/3Sr1/3MnO3 (LSMO) which present full spin polarization, allowing their exploitation in spintronic devices. Still the resistance of a single domain wall in half metals remained unknown. Now a team from Spain, France and Germany has generated a single domain wall on a LSMO nanowire and measured resistance changes 20 times larger than for a normal ferromagnet such as Cobalt.

The magnetic domain texture inherent to magnetic domain walls holds potential for spintronic applications. The electrical resistance in ferromagnets depends on whether domain walls are or not present. This binary effect (known as domain wall magnetoresistance) could be used to encode information in spintronic memory devices. Yet, their exploitation is hindered due to the small changes in resistance observed for normal ferromagnets. A particularly interesting class of materials are manganite perovskites such as La2/3Sr1/3MnO3 (LSMO). These compounds present only one type of spin (full spin polarization) which could potentially lead to domain wall magnetoresistance effects large enough to be exploited in a new generation of spintronic sensors and injectors.

Despite this promising perspective, there exist large discrepancies in the reported values of the domain wall magnetoresistance for this system. The scientists from Spain, France and Germany have fabricated nanowire-based devices enabling the nucleation of individual magnetic domain walls. Magneto transport measurements in these devices show that the presence of a domain wall leads to an increase of the electrical resistance of up to 12%. In absolute terms, the observed resistance change is 20 times larger than that reported for Cobalt.

This work is the result of a longstanding collaboration which involves film growth and nanofabrication, transport measurements, contact microscopy (MFM) imaging, theoretical simulations and the use of advanced characterization techniques such as X-ray photoemission electron microscopy. The combination of a wide variety of different techniques provides a comprehensive multi-facet view of a complex problem which has allowed to reach new insights into a highly debated open question.

Sergio Valencia

  • Copy link

You might also be interested in

  • Electrocatalysis with dual functionality – an overview
    Science Highlight
    31.10.2025
    Electrocatalysis with dual functionality – an overview
    Hybrid electrocatalysts can produce green hydrogen, for example, and valuable organic compounds simultaneously. This promises economically viable applications. However, the complex catalytic reactions involved in producing organic compounds are not yet fully understood. Modern X-ray methods at synchrotron sources such as BESSY II, enable catalyst materials and the reactions occurring on their surfaces to be analysed in real time, in situ and under real operating conditions. This provides insights that can be used for targeted optimisation. A team has now published an overview of the current state of knowledge in Nature Reviews Chemistry.
  • Successful master's degree in IR thermography on solar facades
    News
    22.10.2025
    Successful master's degree in IR thermography on solar facades
    We are delighted to congratulate our student employee Luca Raschke on successfully completing her Master's degree in Renewable Energies at the Hochschule für Technik und Wirtschaft Berlin - and with distinction!
  • BESSY II: Phosphorus chains – a 1D material with 1D electronic properties
    Science Highlight
    21.10.2025
    BESSY II: Phosphorus chains – a 1D material with 1D electronic properties
    For the first time, a team at BESSY II has succeeded in demonstrating the one-dimensional electronic properties in phosphorus. The samples consisted of short chains of phosphorus atoms that self-organise at specific angles on a silver substrate. Through sophisticated analysis, the team was able to disentangle the contributions of these differently aligned chains. This revealed that the electronic properties of each chain are indeed one-dimensional. Calculations predict an exciting phase transition to be expected as soon as these chains are more closely packed. While material consisting of individual chains with longer distances is semiconducting, a very dense chain structure would be metallic.