Elektronische Inhomogenität in MoS₂-Schichten lässt sich glätten

Die Illustration zeigt MoS2-Gitter (grün: Mo, gelb: S). Der untere Block stellt das Material mit einer frisch abgespaltenen Oberfläche dar. Diese Oberfläche ist unregelmäßig, was sich auch in den Messergebnissen zur elektrischen Struktur der Oberfläche zeigt (eingeblendete farbige Karte). Der obere Block zeigt diese Oberfläche nach Behandlung mit atomarem Wasserstoff (weiße Kugeln). Dadurch wird die Oberfläche gleichmäßiger. 

Die Illustration zeigt MoS2-Gitter (grün: Mo, gelb: S). Der untere Block stellt das Material mit einer frisch abgespaltenen Oberfläche dar. Diese Oberfläche ist unregelmäßig, was sich auch in den Messergebnissen zur elektrischen Struktur der Oberfläche zeigt (eingeblendete farbige Karte). Der obere Block zeigt diese Oberfläche nach Behandlung mit atomarem Wasserstoff (weiße Kugeln). Dadurch wird die Oberfläche gleichmäßiger.  © Martin Künsting/HZB

Molybdändisulfid (MoS₂) kann z. B. als Gassensor oder als Photokatalysator bei der grünen Wasserstoffproduktion eingesetzt werden. Obwohl man in der Regel mit der Untersuchung der kristallinen Grundform beginnt, um ein Material zu verstehen, gibt es für MoS₂ viel mehr Studien zu ein- und mehrlagigen Molekularschichten als zum massiven Material. Die wenigen Studien, die bisher durchgeführt wurden, zeigen unterschiedliche und nicht reproduzierbare Ergebnisse für die elektronischen Eigenschaften von frisch abgespaltenen MoS₂-Oberflächen. Diese Frage hat nun ein Team an BESSY II systematisch untersucht. 

Dr. Erika Giangrisostomi und ihr Team am HZB haben die systematische Studie an der LowDosePES-Endstation an BESSY II durchgeführt. Sie nutzten Röntgen-Photoelektronenspektroskopie, um die Elektronenenergien über große Oberflächenbereiche von MoS2-Proben zu kartieren. So konnten sie die Veränderungen der elektronischen Eigenschaften von frisch abgespaltenen Oberflächen im Ultrahochvakuum nach dem Tempern und der Einwirkung von atomarem und molekularem Wasserstoff vor Ort verfolgen.

Zwei wesentliche Erkenntnisse hat das Team gewonnen. Erstens zeigt die Studie erhebliche Schwankungen bei den Elektronenenergien für die frisch gespaltenen Oberflächen und demonstriert damit, wie leicht es zu unterschiedlichen Ergebnissen kommen kann. Zweitens zeigt die Studie, dass die Behandlung mit atomarem Wasserstoff bei Raumtemperatur die elektronische Inhomogenität und Instabilität der Oberfläche wirksam neutralisiert. Ein Grund dafür liegt darin, dass Wasserstoffatome ein Elektron entweder annehmen oder abgeben können. „Unsere Hypothese ist, dass atomarer Wasserstoff bei der Neu-Ordnung von Schwefel-Fehlstellen oder Schwefel-Überschuss hilft und so zu einer gleichmäßigeren Verteilung beiträgt“, sagt Erika Giangrisostomi.

Diese Studie ist ein wichtiger Schritt bei der Erforschung von MoS2. Denn MoS2 wird bereits vielfältig eingesetzt, so dass diese Einblicke für Fachleute in der Elektronik, Photonik, Sensorik und Katalyse interessant sind.

Sonal Mistry

  • Link kopieren

Das könnte Sie auch interessieren

  • Verleihung des Technologietransfer-Preises 2025
    Nachricht
    07.10.2025
    Verleihung des Technologietransfer-Preises 2025
    Die Verleihung des Technologietransfer-Preises wird am 13. Oktober um 14 Uhr im Hörsaal des BESSY-II-Gebäudes in Adlershof stattfinden.
  • Neue Methode wirft Licht auf Nanomaterialien: Wie MXene wirklich funktionieren
    Science Highlight
    01.10.2025
    Neue Methode wirft Licht auf Nanomaterialien: Wie MXene wirklich funktionieren
    Forschende haben erstmals die tatsächlichen Eigenschaften einzelner MXene-Flocken gemessen – einem spannenden neuen Nanomaterial mit Potenzial für bessere Batterien, flexible Elektronik und Geräte für saubere Energie. Mithilfe einer neuartigen lichtbasierten Technik – der spektroskopischen Mikroellipsometrie – haben sie herausgefunden, wie sich MXene auf der Ebene einzelner Flocken verhalten und dabei Veränderungen in der Leitfähigkeit und der optischen Reaktion aufgedeckt, die zuvor bei der Untersuchung gestapelter Schichten verborgen geblieben waren. Dieser Durchbruch liefert grundlegendes Wissen und Werkzeuge für die Entwicklung intelligenterer und effizienterer Technologien auf Basis von MXenen. 
  • Poröse organische Struktur verbessert Lithium-Schwefel-Batterien
    Science Highlight
    15.09.2025
    Poröse organische Struktur verbessert Lithium-Schwefel-Batterien
    Ein neu entwickeltes Material kann die Kapazität und Stabilität von Lithium-Schwefel-Batterien deutlich verbessern. Es basiert auf Polymeren, die ein Gerüst mit offenen Poren bilden. In der Fachsprache werden sie radikale kationische kovalente organische Gerüste oder COFs genannt. In den Poren finden katalytisch beschleunigte Reaktionen statt, die Polysulfide einfangen, die ansonsten die Lebensdauer der Batterie verkürzen würden. Einige der experimentellen Analysen wurden an der BAMline an BESSY II durchgeführt. Prof. Yan Lu, HZB, und Prof. Arne Thomas, Technische Universität Berlin, haben diese Arbeit gemeinsam vorangetrieben.