Elektronische Inhomogenität in MoS₂-Schichten lässt sich glätten

Die Illustration zeigt MoS2-Gitter (grün: Mo, gelb: S). Der untere Block stellt das Material mit einer frisch abgespaltenen Oberfläche dar. Diese Oberfläche ist unregelmäßig, was sich auch in den Messergebnissen zur elektrischen Struktur der Oberfläche zeigt (eingeblendete farbige Karte). Der obere Block zeigt diese Oberfläche nach Behandlung mit atomarem Wasserstoff (weiße Kugeln). Dadurch wird die Oberfläche gleichmäßiger. 

Die Illustration zeigt MoS2-Gitter (grün: Mo, gelb: S). Der untere Block stellt das Material mit einer frisch abgespaltenen Oberfläche dar. Diese Oberfläche ist unregelmäßig, was sich auch in den Messergebnissen zur elektrischen Struktur der Oberfläche zeigt (eingeblendete farbige Karte). Der obere Block zeigt diese Oberfläche nach Behandlung mit atomarem Wasserstoff (weiße Kugeln). Dadurch wird die Oberfläche gleichmäßiger.  © Martin Künsting/HZB

Molybdändisulfid (MoS₂) kann z. B. als Gassensor oder als Photokatalysator bei der grünen Wasserstoffproduktion eingesetzt werden. Obwohl man in der Regel mit der Untersuchung der kristallinen Grundform beginnt, um ein Material zu verstehen, gibt es für MoS₂ viel mehr Studien zu ein- und mehrlagigen Molekularschichten als zum massiven Material. Die wenigen Studien, die bisher durchgeführt wurden, zeigen unterschiedliche und nicht reproduzierbare Ergebnisse für die elektronischen Eigenschaften von frisch abgespaltenen MoS₂-Oberflächen. Diese Frage hat nun ein Team an BESSY II systematisch untersucht. 

Dr. Erika Giangrisostomi und ihr Team am HZB haben die systematische Studie an der LowDosePES-Endstation an BESSY II durchgeführt. Sie nutzten Röntgen-Photoelektronenspektroskopie, um die Elektronenenergien über große Oberflächenbereiche von MoS2-Proben zu kartieren. So konnten sie die Veränderungen der elektronischen Eigenschaften von frisch abgespaltenen Oberflächen im Ultrahochvakuum nach dem Tempern und der Einwirkung von atomarem und molekularem Wasserstoff vor Ort verfolgen.

Zwei wesentliche Erkenntnisse hat das Team gewonnen. Erstens zeigt die Studie erhebliche Schwankungen bei den Elektronenenergien für die frisch gespaltenen Oberflächen und demonstriert damit, wie leicht es zu unterschiedlichen Ergebnissen kommen kann. Zweitens zeigt die Studie, dass die Behandlung mit atomarem Wasserstoff bei Raumtemperatur die elektronische Inhomogenität und Instabilität der Oberfläche wirksam neutralisiert. Ein Grund dafür liegt darin, dass Wasserstoffatome ein Elektron entweder annehmen oder abgeben können. „Unsere Hypothese ist, dass atomarer Wasserstoff bei der Neu-Ordnung von Schwefel-Fehlstellen oder Schwefel-Überschuss hilft und so zu einer gleichmäßigeren Verteilung beiträgt“, sagt Erika Giangrisostomi.

Diese Studie ist ein wichtiger Schritt bei der Erforschung von MoS2. Denn MoS2 wird bereits vielfältig eingesetzt, so dass diese Einblicke für Fachleute in der Elektronik, Photonik, Sensorik und Katalyse interessant sind.

Sonal Mistry

  • Link kopieren

Das könnte Sie auch interessieren

  • Lithium-Schwefel-Batterien mit wenig Elektrolyt: Problemzonen identifiziert
    Science Highlight
    12.08.2025
    Lithium-Schwefel-Batterien mit wenig Elektrolyt: Problemzonen identifiziert
    Mit einer zerstörungsfreien Methode hat ein Team am HZB erstmals Lithium-Schwefel-Batterien im praktischen Pouchzellenformat untersucht, die mit besonders wenig Elektrolyt-Flüssigkeit auskommen. Mit operando Neutronentomographie konnten sie in Echtzeit visualisieren, wie sich der flüssige Elektrolyt während des Ladens und Entladens über mehrere Schichten verteilt und die Elektroden benetzt. Diese Erkenntnisse liefern wertvolle Einblicke in die Mechanismen, die zum Versagen der Batterie führen können, und sind hilfreich für die Entwicklung kompakter Li-S-Batterien mit hoher Energiedichte.
  • Selbst organisierte Monolage verbessert auch bleifreie Perowskit-Solarzellen
    Science Highlight
    04.08.2025
    Selbst organisierte Monolage verbessert auch bleifreie Perowskit-Solarzellen
    Zinn-Perowskit-Solarzellen sind nicht nur ungiftig, sondern auch potenziell stabiler als bleihaltige Perowskit-Solarzellen. Allerdings sind sie auch deutlich weniger effizient. Nun gelang einem internationalen Team eine deutliche Verbesserung:  Das Team identifizierte chemische Verbindungen, die von selbst eine molekulare Schicht bilden, welche sehr gut zur Gitterstruktur von Zinn-Perowskiten passt. Auf dieser Monolage lässt sich Zinn-Perowskit mit hervorragender optoelektronischer Qualität aufwachsen.
  • Schriftrollen aus buddhistischem Schrein an BESSY II virtuell entrollt
    Science Highlight
    23.07.2025
    Schriftrollen aus buddhistischem Schrein an BESSY II virtuell entrollt
    In der mongolischen Sammlung des Ethnologischen Museums der Staatlichen Museen zu Berlin befindet sich ein einzigartiger Gungervaa-Schrein. Der Schrein enthält auch drei kleine Röllchen aus eng gewickelten langen Streifen, die in Seide gewickelt und verklebt sind. Ein Team am HZB konnte die Schrift auf den Streifen teilweise sichtbar machen, ohne die Röllchen durch Aufwickeln zu beschädigen. Mit 3D-Röntgentomographie erstellten sie eine Datenkopie des Röllchens und verwendeten im Anschluss ein mathematisches Verfahren, um den Streifen virtuell zu entrollen. Das Verfahren wird auch in der Batterieforschung angewandt.