Collaborative Research Centre “Nanoscale Metals” raises 11 million euros

Licht wird durch den Nanopartikel fokussiert und die Energie lokal in verschiedene Formen umgewandelt, die dann Chemische Transformation antreiben.

Licht wird durch den Nanopartikel fokussiert und die Energie lokal in verschiedene Formen umgewandelt, die dann Chemische Transformation antreiben. © Felix Stete

Several HZB research teams are participating in the new SFB 1636 "Elementary processes of light-driven reactions on nanoscale metals".

Research on Nansoscale Metals

“We are excited and look forward to the new synergies that can arise from this,” says Prof. Matias Bargheer, who is one of the spokespersons for the new Collaborative Research Centre, led by University of Potsdam. The HZB scientists Renske van der Veen, Yan Lu and Alexander Föhlisch are also involved, in addition to the team of Bargheer, who heads a joint research group at the University of Potsdam and HZB.

The research project aims to help understand the elementary processes that trigger light-controlled chemical reactions on metals at the nanoscale. “There are still many unanswered questions at this fascinating transition between physics and chemistry and we can already apply our concepts to organic coupling reactions and polymerisations, e.g. to functionalise nanoparticles asymmetrically,” says Prof. Dr. Matias Bargheer, talking about the struggles as well as the perspectives of their collaborative research.

Antonia Rötger

  • Copy link

You might also be interested in

  • BESSY II: Phosphorous chains – a 1D material with 1D electronic properties
    Science Highlight
    21.10.2025
    BESSY II: Phosphorous chains – a 1D material with 1D electronic properties
    For the first time, a team at BESSY II has succeeded in demonstrating the one-dimensional electronic properties of a material through a highly refined experimental process. The samples consisted of short chains of phosphorus atoms that self-organise at specific angles on a silver substrate. Through sophisticated analysis, the team was able to disentangle the contributions of these differently aligned chains. This revealed that the electronic properties of each chain are indeed one-dimensional. Calculations predict an exciting phase transition to be expected as soon as these chains are more closely packed. While material consisting of individual chains with longer distances is semiconducting, a very dense chain structure would be metallic.
  • Did marine life in the palaeocene use a compass?
    Science Highlight
    20.10.2025
    Did marine life in the palaeocene use a compass?
    Some ancient marine organisms produced mysterious magnetic particles of unusually large size, which can now be found as fossils in marine sediments. An international team has succeeded in mapping the magnetic domains on one of such ‘giant magnetofossils’ using a sophisticated method at the Diamond X-ray source. Their analysis shows that these particles could have allowed these organisms to sense tiny variations in both the direction and intensity of the Earth’s magnetic field, enabling them to geolocate themselves and navigate across the ocean. The method offers a powerful tool for magnetically testing whether putative biological iron oxide particles in Mars samples have a biogenic origin.
  • What vibrating molecules might reveal about cell biology
    Science Highlight
    16.10.2025
    What vibrating molecules might reveal about cell biology
    Infrared vibrational spectroscopy at BESSY II can be used to create high-resolution maps of molecules inside live cells and cell organelles in native aqueous environment, according to a new study by a team from HZB and Humboldt University in Berlin. Nano-IR spectroscopy with s-SNOM at the IRIS beamline is now suitable for examining tiny biological samples in liquid medium in the nanometre range and generating infrared images of molecular vibrations with nanometre resolution. It is even possible to obtain 3D information. To test the method, the team grew fibroblasts on a highly transparent SiC membrane and examined them in vivo. This method will provide new insights into cell biology.