BESSY II: Experimental verification of an exotic quantum phase in Au2Pb

The figure shows the measured energy-momentum relationship for Au<sub>2</sub>Pb. The linear behavior is evidence for a Dirac semimetal. In addition, a Lifshitz transition is observed: At temperatures 223 K and below, the electrons behave like positively charged particles, whereas at room temperature they behave like negatively charged ones.&nbsp;

The figure shows the measured energy-momentum relationship for Au2Pb. The linear behavior is evidence for a Dirac semimetal. In addition, a Lifshitz transition is observed: At temperatures 223 K and below, the electrons behave like positively charged particles, whereas at room temperature they behave like negatively charged ones.  © HZB

A team of HZB has investigated the electronic structure of  Au2Pb at BESSY II by angle-resolved photoemission spectroscopy across a wide temperature range: The results are in accordance with the electronic structure of a three-dimensional topological Dirac semimetal, in agreement with theoretical calculations.

The experimental data unveil some very special features linked to a Lifshitz transition. The study broadens the range of currently known materials exhibiting three-dimensional Dirac phases, and the observed Lifshitz transition demonstrates a viable mechanism to switch the charge carrier type in electric transport without the need for external doping. Moreover, the material becomes interesting as candidate for the realization of a topological superconductor.

The study which includes theory from San Sebastian and synthesis from Princeton was highlighted as Editor's Suggestion in the journal Physical Review Letters.

red.

  • Copy link

You might also be interested in

  • Green fabrication of hybrid materials as highly sensitive X-ray detectors
    Science Highlight
    08.05.2025
    Green fabrication of hybrid materials as highly sensitive X-ray detectors
    New bismuth-based organic-inorganic hybrid materials show exceptional sensitivity and long-term stability as X-ray detectors, significantly more sensitive than commercial X-ray detectors. In addition, these materials can be produced without solvents by ball milling, a mechanochemical synthesis process that is environmentally friendly and scalable. More sensitive detectors would allow for a reduction in the radiation exposure during X-ray examinations.
  • Electrical energy storage: BAM, HZB, and HU Berlin plan joint Berlin Battery Lab
    News
    07.05.2025
    Electrical energy storage: BAM, HZB, and HU Berlin plan joint Berlin Battery Lab
    The Federal Institute for Materials Research and Testing (BAM), the Helmholtz-Zentrum Berlin (HZB), and Humboldt University of Berlin (HU Berlin) have signed a memorandum of understanding (MoU) to establish the Berlin Battery Lab. The lab will pool the expertise of the three institutions to advance the development of sustainable battery technologies. The joint research infrastructure will also be open to industry for pioneering projects in this field.
  • BESSY II: Insight into ultrafast spin processes with femtoslicing
    Science Highlight
    05.05.2025
    BESSY II: Insight into ultrafast spin processes with femtoslicing
    An international team has succeeded at BESSY II for the first time to elucidate how ultrafast spin-polarised current pulses can be characterised by measuring the ultrafast demagnetisation in a magnetic layer system within the first hundreds of femtoseconds. The findings are useful for the development of spintronic devices that enable faster and more energy-efficient information processing and storage. The collaboration involved teams from the University of Strasbourg, HZB, Uppsala University and several other universities.