BESSY II: Experimenteller Nachweis einer exotischen Quantenphase in Au2Pb

Die Abbildung zeigt die gemessene Energie-Impuls-Beziehung f&uuml;r Au<sub>2</sub>Pb. Das lineare Verhalten ist der Nachweis f&uuml;r ein Dirac-Semimetall. Zus&auml;tzlich wird ein Lifshitz-&Uuml;bergang beobachtet: Bei Temperaturen 223 K und darunter verhalten sich die Elektronen wie positiv geladene Teilchen, bei Raumtemperatur dagegen wie negativ geladene.&nbsp;

Die Abbildung zeigt die gemessene Energie-Impuls-Beziehung für Au2Pb. Das lineare Verhalten ist der Nachweis für ein Dirac-Semimetall. Zusätzlich wird ein Lifshitz-Übergang beobachtet: Bei Temperaturen 223 K und darunter verhalten sich die Elektronen wie positiv geladene Teilchen, bei Raumtemperatur dagegen wie negativ geladene.  © HZB

Ein Team am HZB hat die elektronische Struktur von Au2Pb an BESSY II durch winkelaufgelöste Photoemissionsspektroskopie über einen weiten Temperaturbereich untersucht: Die Ergebnisse zeigen die elektronische Struktur eines dreidimensionalen topologischen Dirac-Semimetalls und stehen im Einklang mit theoretischen Berechnungen.

Die experimentellen Daten zeigen die charakteristische Signatur eines Lifshitz-Übergangs. Die Studie erweitert die Palette der derzeit bekannten Materialien, die dreidimensionale Dirac-Phasen aufweisen. Außerdem zeigt der beobachtete Lifshitz-Übergang einen praktikablen Mechanismus auf, mit dem die Ladungsträgerart bei der Stromleitung umgeschaltet werden kann, ohne dass das Material mit Fremdatomen dotiert werden müsste. Zudem wird das Au2Pb als Kandidat für die Realisierung eines topologischen Supraleiters interessant.

Die Studie, die auch theoretische Rechnungen aus San Sebastian und Materialsynthese aus Princeton umfasst, wurde in der Zeitschrift Physical Review Letters als "Editor's Suggestion" ausgewählt.

red.

  • Link kopieren

Das könnte Sie auch interessieren

  • BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
    Science Highlight
    21.10.2025
    BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
    Erstmals ist es einem Team an BESSY II gelungen, experimentell eindimensionale elektronische Eigenschaften in einem Material nachzuweisen. Die Proben bestanden aus kurzen Ketten aus Phosphoratomen, die sich auf einem Silbersubstrat selbst organisiert in bestimmten Winkeln bilden. Durch eine raffinierte Auswertung gelang es, die Beiträge von unterschiedlich ausgerichteten Ketten voneinander zu trennen und zu zeigen, dass die elektronischen Eigenschaften tatsächlich einen eindimensionalen Charakter besitzen. Berechnungen zeigten darüber hinaus, dass ein spannender Phasenübergang zu erwarten ist. Während das Material aus einzelnen Ketten halbleitend ist, wäre eine sehr dichte Kettenstruktur metallisch.
  • Ein innerer Kompass für Meereslebewesen im Paläozän
    Science Highlight
    20.10.2025
    Ein innerer Kompass für Meereslebewesen im Paläozän
    Vor Jahrmillionen produzierten einige Meeresorganismen mysteriöse Magnetpartikel von ungewöhnlicher Größe, die heute als Fossilien in Sedimenten zu finden sind. Nun ist es einem internationalen Team gelungen, die magnetischen Domänen auf einem dieser „Riesenmagnetfossilien” mit einer raffinierten Methode an der Diamond-Röntgenquelle zu kartieren. Ihre Analyse zeigt, dass diese Partikel es den Organismen ermöglicht haben könnten, winzige Schwankungen sowohl in der Richtung als auch in der Intensität des Erdmagnetfelds wahrzunehmen. Dadurch konnten sie sich verorten und über den Ozean navigieren. Die neue Methode eignet sich auch, um zu testen, ob bestimmte Eisenoxidpartikel in Marsproben tatsächlich biogenen Ursprungs sind.
  • Was vibrierende Moleküle über die Zellbiologie verraten
    Science Highlight
    16.10.2025
    Was vibrierende Moleküle über die Zellbiologie verraten
    Mit Infrarot-Vibrationsspektroskopie an BESSY II lassen sich hochaufgelöste Karten von Molekülen in lebenden Zellen und Zellorganellen in ihrer natürlichen wässrigen Umgebung erstellen, zeigt eine neue Studie von einem Team aus HZB und Humboldt-Universität zu Berlin. Die Nano-IR-Spektroskopie mit SNOM an der IRIS-Beamline eignet sich, um winzige biologische Proben zu untersuchen und Infrarotbilder der Molekülschwingungen mit Nanometer-Auflösung zu erzeugen. Es ist sogar möglich, 3D-Informationen, also Infrarot-Tomogramme, aufzuzeichnen. Um das Verfahren zu testen, hat das Team Fibroblasten auf einer hochtransparenten SiC-Membran gezüchtet und in vivo untersucht. Die Methode ermöglicht neue Einblicke in die Zellbiologie.