BESSY II: Experimental verification of an exotic quantum phase in Au2Pb

The figure shows the measured energy-momentum relationship for Au<sub>2</sub>Pb. The linear behavior is evidence for a Dirac semimetal. In addition, a Lifshitz transition is observed: At temperatures 223 K and below, the electrons behave like positively charged particles, whereas at room temperature they behave like negatively charged ones.&nbsp;

The figure shows the measured energy-momentum relationship for Au2Pb. The linear behavior is evidence for a Dirac semimetal. In addition, a Lifshitz transition is observed: At temperatures 223 K and below, the electrons behave like positively charged particles, whereas at room temperature they behave like negatively charged ones.  © HZB

A team of HZB has investigated the electronic structure of  Au2Pb at BESSY II by angle-resolved photoemission spectroscopy across a wide temperature range: The results are in accordance with the electronic structure of a three-dimensional topological Dirac semimetal, in agreement with theoretical calculations.

The experimental data unveil some very special features linked to a Lifshitz transition. The study broadens the range of currently known materials exhibiting three-dimensional Dirac phases, and the observed Lifshitz transition demonstrates a viable mechanism to switch the charge carrier type in electric transport without the need for external doping. Moreover, the material becomes interesting as candidate for the realization of a topological superconductor.

The study which includes theory from San Sebastian and synthesis from Princeton was highlighted as Editor's Suggestion in the journal Physical Review Letters.

red.

  • Copy link

You might also be interested in

  • BESSY II: Phosphorus chains – a 1D material with 1D electronic properties
    Science Highlight
    21.10.2025
    BESSY II: Phosphorus chains – a 1D material with 1D electronic properties
    For the first time, a team at BESSY II has succeeded in demonstrating the one-dimensional electronic properties in phosphorus. The samples consisted of short chains of phosphorus atoms that self-organise at specific angles on a silver substrate. Through sophisticated analysis, the team was able to disentangle the contributions of these differently aligned chains. This revealed that the electronic properties of each chain are indeed one-dimensional. Calculations predict an exciting phase transition to be expected as soon as these chains are more closely packed. While material consisting of individual chains with longer distances is semiconducting, a very dense chain structure would be metallic.
  • Did marine life in the palaeocene use a compass?
    Science Highlight
    20.10.2025
    Did marine life in the palaeocene use a compass?
    Some ancient marine organisms produced mysterious magnetic particles of unusually large size, which can now be found as fossils in marine sediments. An international team has succeeded in mapping the magnetic domains on one of such ‘giant magnetofossils’ using a sophisticated method at the Diamond X-ray source. Their analysis shows that these particles could have allowed these organisms to sense tiny variations in both the direction and intensity of the Earth’s magnetic field, enabling them to geolocate themselves and navigate across the ocean. The method offers a powerful tool for magnetically testing whether putative biological iron oxide particles in Mars samples have a biogenic origin.
  • What vibrating molecules might reveal about cell biology
    Science Highlight
    16.10.2025
    What vibrating molecules might reveal about cell biology
    Infrared vibrational spectroscopy at BESSY II can be used to create high-resolution maps of molecules inside live cells and cell organelles in native aqueous environment, according to a new study by a team from HZB and Humboldt University in Berlin. Nano-IR spectroscopy with s-SNOM at the IRIS beamline is now suitable for examining tiny biological samples in liquid medium in the nanometre range and generating infrared images of molecular vibrations with nanometre resolution. It is even possible to obtain 3D information. To test the method, the team grew fibroblasts on a highly transparent SiC membrane and examined them in vivo. This method will provide new insights into cell biology.