Solar hydrogen: Barriers for charge transport in metal oxides

Im Femtosekundenlabor werden alle Proben sowohl mit einer Terahertz-Methode (OPTP) als auch mit Mikrowellenspektroskopie (TRMC) untersucht, beide Messmethoden liefern zunächst Informationen über die Mobilität und Lebensdauer der Ladungsträger in Metalloxiden- allerdings auf unterschiedlichen Zeitskalen.

Im Femtosekundenlabor werden alle Proben sowohl mit einer Terahertz-Methode (OPTP) als auch mit Mikrowellenspektroskopie (TRMC) untersucht, beide Messmethoden liefern zunächst Informationen über die Mobilität und Lebensdauer der Ladungsträger in Metalloxiden- allerdings auf unterschiedlichen Zeitskalen. © HZB

In theory, metal oxides are ideally suited as photoelectrodes for the direct generation of hydrogen with sunlight. Now, for the first time, a team at Helmholtz-Zentrum Berlin has succeeded in determining the transport properties of the charge carriers in different metal oxides over a time range of nine orders of magnitude.

This was achieved by combining terahertz and microwave analyses in a time range from 100 femtoseconds to 100 microseconds. In the case of metal oxides, it was shown how charge carriers are retained or lost completely and are therefore not available for the production of hydrogen. These effects could be reduced on the first materials, enabling better photoelectrodes.

Metal oxides are theoretically ideal as photoelectrodes

In the future, climate-neutral hydrogen will play an important role as a fuel and raw material. Hydrogen is produced by electrolysis of water, either using an indirect approach in which an external energy source (solar panel or wind turbine) supplies the electrolysis cell with voltage, or using a direct approach: a photoelectrochemical cell in which the photoelectrode itself supplies the electrical energy for electrolysis (PEC cell). This direct approach would have some advantages, but is not yet competitive.

So far, this is mainly due to a lack of good photoelectrodes. Metal oxides are considered suitable in principle. They are inexpensive, non-toxic, stable in aqueous solution and also often possess catalytic properties that can accelerate the desired chemical reaction. And sunlight releases charge carriers in metal oxides, thus generating an electrical voltage. But compared to doped semiconductors such as silicon, these charge carriers are not very mobile. They are rather slow, or immediately settle back into the lattice and localise. This is due to various mechanisms on different time and length scales which are still poorly understood.

In the femtosecond laser laboratory at HZB, the team led by Dr. Dennis Friedrich and Dr. Hannes Hempel has now investigated in detail for the first time what limits the conductivity of metal oxides: “We wanted to find out how strongly charge carriers are localised and how this reduces their mobility at different times,” says Markus Schleuning, first author of the study, who did his doctorate on this topic.

“First, we developed a new method to determine the diffusion lengths. The simple equation can also be applied to other classes of materials such as halide perovskites or silicon,” explains Hempel.

Best materials for climate-neutral generated hydrogen

Then we found out that this does not work for certain materials, and precisely when the charge carriers are located”, adds Friedrich: “In the femtosecond laboratory, all samples are investigated with both a terahertz method (OPTP) and microwave spectroscopy (TRMC), both measurement methods initially provide information on the mobility and lifetime of the charge carriers – but on different time scales. The results can be very different, indicating that the carriers have been localised in the meantime. From ultrafast processes in the range of 100 femtoseconds to slower processes lasting 100 microseconds, the team was able to determine the dynamics of charge carriers in the materials. By way of comparison, extrapolated to our human perception of time, this would correspond to changes in time spans of 1 second to 31 years.

The physicists used this combination of methods to analyse ten metal oxide compounds, including Fe2O3, CuFeO2, α-SnWO4, BaSnO3 and CuBi2O4. For all materials, the mobilities were very low compared to conventional semiconductors. A heat treatment, annealing, significantly improved the mobility in BaSnO3. The best performer was the well-known bismuth vanadate (BiVO4), which shows little carrier localisation on the length scales studied. The study shows how metal oxide compounds can be characterised to identify and develop the best materials for photoelectrodes.

arö

  • Copy link

You might also be interested in

  • Green fabrication of hybrid materials as highly sensitive X-ray detectors
    Science Highlight
    08.05.2025
    Green fabrication of hybrid materials as highly sensitive X-ray detectors
    New bismuth-based organic-inorganic hybrid materials show exceptional sensitivity and long-term stability as X-ray detectors, significantly more sensitive than commercial X-ray detectors. In addition, these materials can be produced without solvents by ball milling, a mechanochemical synthesis process that is environmentally friendly and scalable. More sensitive detectors would allow for a reduction in the radiation exposure during X-ray examinations.
  • Electrical energy storage: BAM, HZB, and HU Berlin plan joint Berlin Battery Lab
    News
    07.05.2025
    Electrical energy storage: BAM, HZB, and HU Berlin plan joint Berlin Battery Lab
    The Federal Institute for Materials Research and Testing (BAM), the Helmholtz-Zentrum Berlin (HZB), and Humboldt University of Berlin (HU Berlin) have signed a memorandum of understanding (MoU) to establish the Berlin Battery Lab. The lab will pool the expertise of the three institutions to advance the development of sustainable battery technologies. The joint research infrastructure will also be open to industry for pioneering projects in this field.
  • BESSY II: Insight into ultrafast spin processes with femtoslicing
    Science Highlight
    05.05.2025
    BESSY II: Insight into ultrafast spin processes with femtoslicing
    An international team has succeeded at BESSY II for the first time to elucidate how ultrafast spin-polarised current pulses can be characterised by measuring the ultrafast demagnetisation in a magnetic layer system within the first hundreds of femtoseconds. The findings are useful for the development of spintronic devices that enable faster and more energy-efficient information processing and storage. The collaboration involved teams from the University of Strasbourg, HZB, Uppsala University and several other universities.