Spintronik: Röntgenmikroskopie an BESSY II kann Domänenwände unterscheiden

Die beiden oberen Reihen zeigen den erwarteten magnetischen Bildkontrast für Skyrmionen vom Bloch- und Néel-Typ bei Verwendung von zirkular, linear horizontal (LH) und linear vertikal (LV) polarisierter Röntgenstrahlung. Die Ergebnisse der experimentellen Raster-Transmissions-Röntgenmikroskopie (STXM) sind in der unteren Reihe dargestellt, sie entsprechen der Simulation der Skyrmionen vom Néel-Typ.

Die beiden oberen Reihen zeigen den erwarteten magnetischen Bildkontrast für Skyrmionen vom Bloch- und Néel-Typ bei Verwendung von zirkular, linear horizontal (LH) und linear vertikal (LV) polarisierter Röntgenstrahlung. Die Ergebnisse der experimentellen Raster-Transmissions-Röntgenmikroskopie (STXM) sind in der unteren Reihe dargestellt, sie entsprechen der Simulation der Skyrmionen vom Néel-Typ. © HZB

Magnetische Skyrmionen sind winzige Wirbel aus magnetischen Spin-Texturen. Im Prinzip könnten Materialien mit Skyrmionen als spintronische Bauelemente verwendet werden, zum Beispiel als sehr schnelle und energieeffiziente Datenspeicher. Doch im Moment ist es noch schwierig, Skyrmionen bei Raumtemperatur zu kontrollieren und zu manipulieren. Eine neue Studie an BESSY II analysiert nun die Bildung von Skyrmionen in einem besonders interessanten Material in Echtzeit und mit hoher räumlicher Auflösung: Es handelt sich um ferrimagnetische Dünnschichten aus Dysprosium und Kobalt. Die Ergebnisse zeigen, dass es möglich ist, den Skyrmionentyp klar zu bestimmen.

Isolierte magnetische Skyrmionen sind topologisch geschützte Spin-Texturen, die wegen ihrer möglichen Anwendungen in der Informationstechnologie gerade intensiv untersucht werden. Besonders interessant sind Skyrmionen, die in ferrimagnetischen Seltenerd-Übergangsmetall-Materialien (RE-TM) auftreten. Sie weisen abstimmbare ferromagnetische Eigenschaften mit antiferromagnetisch gekoppelten Untergittern auf. Durch die Wahl der Elemente aus der Gruppe der Seltenen Erden und der Übergangsmetalle bieten sie eine Spielwiese für die Kontrolle der Magnetisierung und der senkrechten magnetischen Anisotropie, beides Schlüsselparameter für die Stabilisierung topologischer ferrimagnetischer Texturen.

Spinstrukturen an BESSY II  bestimmen

Eine Klasse von ferrimagnetischen Legierungen besitzt eine stärkere senkrechte magnetische Anisotropie, dazu gehört auch eine Verbindung aus Dysprosium (Dy) und Kobalt (Co). Diese Materialien könnten Informationen deutlich stabiler abspeichern, allerdings sind ihre magnetischen Eigenschaften und Strukturen bisher kaum untersucht worden. Ein Team unter der Leitung von Dr. Florin Radu hat nun DyCo3-Proben mit röntgenmikroskopischen Methoden an BESSY II analysiert und die Spinstrukturen bestimmt.

Dazu nutzten sie die Raster-Transmissions-Röntgenmikroskopie mit zirkular oder linear polarisiertem Röntgenlicht, um über röntgenmagnetische Effekte den Kontrast zwischen den Elementen zu steigern. „So konnten wir isolierte ferrimagnetische Skyrmionen in hoher Dichte direkt beobachten und ihren Domänenwandtyp genau bestimmen“, berichtet Radu.

Die Ergebnisse zeigen, dass die ferrimagnetischen Skyrmionen vom Néel-Typ sind und sich deutlich von den anderen Domänenwänden, den Bloch-Wänden, unterscheiden lassen. Damit kann erstmals der Typ der Domänenwände durch Röntgenuntersuchungen zuverlässig bestimmt werden. Dies ist ein wichtiger Schritt in Richtung der Anwendung dieser interessanten Materialklasse für echte spintronische Bauelemente.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Neue Katalysatormaterialien auf Basis von Torf für Brennstoffzellen
    Science Highlight
    25.11.2025
    Neue Katalysatormaterialien auf Basis von Torf für Brennstoffzellen
    Eisen-Stickstoff-Kohlenstoff-Katalysatoren haben das Potenzial, teure Platinkatalysatoren in Brennstoffzellen zu ersetzen. Dies zeigt eine Studie aus Helmholtz-Zentrum Berlin (HZB), der Physikalisch-Technischen Bundesanstalt (PTB) und der Universitäten in Tartu und Tallinn, Estland. An BESSY II beobachtete das Team, wie sich komplexe Mikrostrukturen in den Proben bilden. Anschließend analysierten sie, welche Strukturparameter für die Förderung der bevorzugten elektrochemischen Reaktionen besonders wichtig waren. Der Rohstoff für solche Katalysatoren ist gut zersetzter Torf.
  • Helmholtz-Nachwuchsgruppe zu Magnonen
    Nachricht
    24.11.2025
    Helmholtz-Nachwuchsgruppe zu Magnonen
    Dr. Hebatalla Elnaggar baut am HZB eine neue Helmholtz-Nachwuchsgruppe auf. An BESSY II will die Materialforscherin sogenannte Magnonen in magnetischen Perowskit-Dünnschichten untersuchen. Sie hat sich zum Ziel gesetzt, mit ihrer Forschung Grundlagen für eine zukünftige Terahertz-Magnon-Technologie zu legen: Magnonische Bauelemente im Terahertz-Bereich könnten Daten mit einem Bruchteil der Energie verarbeiten, die moderne Halbleiterbauelemente benötigen, und das mit bis zu tausendfacher Geschwindigkeit.

    Dr. Hebatalla Elnaggar will an BESSY II magnetische Perowskit-Dünnschichten untersuchen und damit die Grundlagen für eine künftige Magnonen-Technologie schaffen.

  • Zukunft der Korallen – Was Röntgenuntersuchungen zeigen können
    Interview
    12.11.2025
    Zukunft der Korallen – Was Röntgenuntersuchungen zeigen können
    In diesem Sommer war es in allen Medien. Angetrieben durch die Klimakrise haben nun auch die Ozeane einen kritischen Punkt überschritten, sie versauern immer mehr. Meeresschnecken zeigen bereits erste Schäden, aber die zunehmende Versauerung könnte auch die kalkhaltigen Skelettstrukturen von Korallen beeinträchtigen. Dabei leiden Korallen außerdem unter marinen Hitzewellen und Verschmutzung, die weltweit zur Korallenbleiche und zum Absterben ganzer Riffe führen. Wie genau wirkt sich die Versauerung auf die Skelettbildung aus?

    Die Meeresbiologin Prof. Dr. Tali Mass von der Universität Haifa, Israel, ist Expertin für Steinkorallen. Zusammen mit Prof. Dr. Paul Zaslansky, Experte für Röntgenbildgebung an der Charité Berlin, untersuchte sie an BESSY II die Skelettbildung bei Babykorallen, die unter verschiedenen pH-Bedingungen aufgezogen wurden. Antonia Rötger befragte die beiden Experten online zu ihrer aktuellen Studie und der Zukunft der Korallenriffe.