Spintronik: Röntgenmikroskopie an BESSY II kann Domänenwände unterscheiden

Die beiden oberen Reihen zeigen den erwarteten magnetischen Bildkontrast für Skyrmionen vom Bloch- und Néel-Typ bei Verwendung von zirkular, linear horizontal (LH) und linear vertikal (LV) polarisierter Röntgenstrahlung. Die Ergebnisse der experimentellen Raster-Transmissions-Röntgenmikroskopie (STXM) sind in der unteren Reihe dargestellt, sie entsprechen der Simulation der Skyrmionen vom Néel-Typ.

Die beiden oberen Reihen zeigen den erwarteten magnetischen Bildkontrast für Skyrmionen vom Bloch- und Néel-Typ bei Verwendung von zirkular, linear horizontal (LH) und linear vertikal (LV) polarisierter Röntgenstrahlung. Die Ergebnisse der experimentellen Raster-Transmissions-Röntgenmikroskopie (STXM) sind in der unteren Reihe dargestellt, sie entsprechen der Simulation der Skyrmionen vom Néel-Typ. © HZB

Magnetische Skyrmionen sind winzige Wirbel aus magnetischen Spin-Texturen. Im Prinzip könnten Materialien mit Skyrmionen als spintronische Bauelemente verwendet werden, zum Beispiel als sehr schnelle und energieeffiziente Datenspeicher. Doch im Moment ist es noch schwierig, Skyrmionen bei Raumtemperatur zu kontrollieren und zu manipulieren. Eine neue Studie an BESSY II analysiert nun die Bildung von Skyrmionen in einem besonders interessanten Material in Echtzeit und mit hoher räumlicher Auflösung: Es handelt sich um ferrimagnetische Dünnschichten aus Dysprosium und Kobalt. Die Ergebnisse zeigen, dass es möglich ist, den Skyrmionentyp klar zu bestimmen.

Isolierte magnetische Skyrmionen sind topologisch geschützte Spin-Texturen, die wegen ihrer möglichen Anwendungen in der Informationstechnologie gerade intensiv untersucht werden. Besonders interessant sind Skyrmionen, die in ferrimagnetischen Seltenerd-Übergangsmetall-Materialien (RE-TM) auftreten. Sie weisen abstimmbare ferromagnetische Eigenschaften mit antiferromagnetisch gekoppelten Untergittern auf. Durch die Wahl der Elemente aus der Gruppe der Seltenen Erden und der Übergangsmetalle bieten sie eine Spielwiese für die Kontrolle der Magnetisierung und der senkrechten magnetischen Anisotropie, beides Schlüsselparameter für die Stabilisierung topologischer ferrimagnetischer Texturen.

Spinstrukturen an BESSY II  bestimmen

Eine Klasse von ferrimagnetischen Legierungen besitzt eine stärkere senkrechte magnetische Anisotropie, dazu gehört auch eine Verbindung aus Dysprosium (Dy) und Kobalt (Co). Diese Materialien könnten Informationen deutlich stabiler abspeichern, allerdings sind ihre magnetischen Eigenschaften und Strukturen bisher kaum untersucht worden. Ein Team unter der Leitung von Dr. Florin Radu hat nun DyCo3-Proben mit röntgenmikroskopischen Methoden an BESSY II analysiert und die Spinstrukturen bestimmt.

Dazu nutzten sie die Raster-Transmissions-Röntgenmikroskopie mit zirkular oder linear polarisiertem Röntgenlicht, um über röntgenmagnetische Effekte den Kontrast zwischen den Elementen zu steigern. „So konnten wir isolierte ferrimagnetische Skyrmionen in hoher Dichte direkt beobachten und ihren Domänenwandtyp genau bestimmen“, berichtet Radu.

Die Ergebnisse zeigen, dass die ferrimagnetischen Skyrmionen vom Néel-Typ sind und sich deutlich von den anderen Domänenwänden, den Bloch-Wänden, unterscheiden lassen. Damit kann erstmals der Typ der Domänenwände durch Röntgenuntersuchungen zuverlässig bestimmt werden. Dies ist ein wichtiger Schritt in Richtung der Anwendung dieser interessanten Materialklasse für echte spintronische Bauelemente.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Grüne Herstellung von Hybridmaterialien als hochempfindliche Röntgendetektoren
    Science Highlight
    08.05.2025
    Grüne Herstellung von Hybridmaterialien als hochempfindliche Röntgendetektoren
    Neue organisch-anorganische Hybridmaterialien auf Basis von Wismut sind hervorragend als Röntgendetektoren geeignet, sie sind deutlich empfindlicher als handelsübliche Röntgendetektoren und langzeitstabil. Darüber hinaus können sie ohne Lösungsmittel durch Kugelmahlen hergestellt werden, einem umweltfreundlichen Syntheseverfahren, das auch in der Industrie genutzt wird. Empfindlichere Detektoren würden die Strahlenbelastung bei Röntgenuntersuchungen erheblich reduzieren.

  • Energiespeicher: BAM, HZB und HU Berlin planen gemeinsames Berlin Battery Lab
    Nachricht
    07.05.2025
    Energiespeicher: BAM, HZB und HU Berlin planen gemeinsames Berlin Battery Lab
    Die Bundesanstalt für Materialforschung und -prüfung (BAM), das Helmholtz-Zentrum Berlin (HZB) und die Humboldt-Universität zu Berlin (HU Berlin) haben ein Memorandum of Understanding (MoU) zur Gründung des Berlin Battery Lab unterzeichnet. Das Labor wird die Expertise der drei Institutionen bündeln, um die Entwicklung nachhaltiger Batterietechnologien voranzutreiben. Die gemeinsame Forschungsinfrastruktur soll auch der Industrie für wegweisende Projekte in diesem Bereich offenstehen.
  • BESSY II: Einblick in ultraschnelle Spinprozesse mit Femtoslicing
    Science Highlight
    05.05.2025
    BESSY II: Einblick in ultraschnelle Spinprozesse mit Femtoslicing
    Einem internationalen Team ist es an BESSY II erstmals gelungen, einen besonders schnellen Prozess im Inneren eines magnetischen Schichtsystems, eines Spinventils, aufzuklären: An der Femtoslicing-Beamline von BESSY II konnten sie die ultraschnelle Entmagnetisierung durch spinpolarisierte Stromimpulse beobachten. Die Ergebnisse helfen bei der Entwicklung von spintronischen Bauelementen für die schnellere und energieeffizientere Verarbeitung und Speicherung von Information. An der Zusammenarbeit waren Teams der Universität Straßburg, des HZB, der Universität Uppsala sowie weiterer Universitäten beteiligt.