Höhere Messgenauigkeit öffnet neues Fenster in die Quantenwelt

Für den neuen Probenstab mit Probenhalter hat das HZB-Team mehrere Innovationen entwickelt, die das Rauschen unterdrücken und Temperaturmessungen mit extremer Präzsion ermöglichen. 

Für den neuen Probenstab mit Probenhalter hat das HZB-Team mehrere Innovationen entwickelt, die das Rauschen unterdrücken und Temperaturmessungen mit extremer Präzsion ermöglichen.  © D. Kojda /HZB

Abb. 2: In Längsrichtung der Probe liegt eine Temperaturdifferenz an. Durch den Thermischen Hall-Effekt entsteht eine sehr kleine transversale Temperaturdifferenz. Das Magnetfeld dringt senkrecht durch die Probenebene.

Abb. 2: In Längsrichtung der Probe liegt eine Temperaturdifferenz an. Durch den Thermischen Hall-Effekt entsteht eine sehr kleine transversale Temperaturdifferenz. Das Magnetfeld dringt senkrecht durch die Probenebene. © D. Kojda /HZB

Ein Team am HZB hat ein neues Messverfahren entwickelt, um winzigste Temperaturdifferenzen im Bereich von 100 Mikrokelvin beim thermischen Hall-Effekt erstmals genau zu erfassen. Aufgrund von thermischem Rauschen konnten solche Temperaturunterschiede bislang nicht quantitativ vermessen werden. Am Beispiel von Terbiumtitanat, dessen Eigenschaften gut bekannt sind, zeigte das Team, dass die Messmethode höchst verlässliche Ergebnisse liefert. Der thermische Hall-Effekt gibt Auskunft über kohärente Vielteilchenzustände in Quantenmaterialien und nutzt dazu ihre Wechselwirkung mit Gitterschwingungen (Phononen).

Natürlich gelten die Gesetze der Quantenphysik in allen Materialien. Doch in den so genannten Quantenmaterialien führen diese Gesetze zu besonders ungewöhnlichen Eigenschaften. So lassen sich zum Beispiel durch Magnetfelder oder Veränderungen der Temperatur Anregungen, kollektive Zustände oder Quasiteilchen hervorrufen, die mit Phasenübergängen in exotische Zustände einhergehen. Dies lässt sich vielfältig nutzen, sofern man es verstehen, kontrollieren und steuern kann. Zum Beispiel für künftige Informationstechnologien, die Daten mit nur minimalem Energiebedarf speichern oder verarbeiten können.

Der thermische Hall-Effekt (THE) spielt eine Schlüsselrolle, um exotische Zustände in kondensierter Materie zu identifizieren. Dabei handelt es sich um eine winzige Wärmedifferenz, die quer zu einem angelegten Temperaturgradienten entsteht, sobald ein senkrechtes Magnetfeld die Probe durchdringt (siehe Abbildung 2). Insbesondere ermöglicht die quantitative Messung des thermischen Hall-Effekt es, die exotischen Anregungen von konventionellem Verhalten zu trennen. Der thermische Hall-Effekt wird in einer Vielzahl von Materialien beobachtet, darunter Spin-Flüssigkeiten, Spin-Eis, Mutterphasen von Hoch-Temperatur-Supraleitern und Materialien mit stark polaren Eigenschaften. Allerdings sind die Wärmedifferenzen, die senkrecht zum Temperaturgradienten in der Probe entstehen, extrem winzig: Für typische millimetergroße Proben liegen sie im Bereich von Mikrokelvin bis Millikelvin. Bisher war es schwierig, diese Wärmedifferenzen experimentell zu erfassen, weil die eingetragene Wärme durch Mess-Elektronik und Sensoren den Effekt überdeckten.

Pionierarbeit mit neuem Probenhalter

Das Team um PD Dr. Klaus Habicht hat nun Pionierarbeit geleistet. Gemeinsam mit den Spezialisten aus der HZB-Probenumgebung haben sie einen neuartigen Probenstab mit modularem Aufbau entwickelt, der in verschiedene Kryomagnete eingesetzt werden kann. Der Probenkopf nimmt die Probe auf und misst mit kapazitiver Thermometrie den thermischen Halleffekt. Dabei wird die Temperaturabhängigkeit der Kapazität von eigens zu diesem Zweck angefertigten Miniaturkondensatoren genutzt. Mit dem Aufbau gelang es den Experten mit mehreren Innovationen, die Wärmeübertragung durch Sensoren und Elektronik deutlich zu verringern und Störsignale und Rauschen zu dämpfen. Um das Messverfahren zu validieren, untersuchten sie eine Probe aus Terbiumtitanat, dessen Wärmeleitfähigkeit in unterschiedlichen Kristallrichtungen unter Magnetfeld gut bekannt ist. Die Messdaten stimmten ausgezeichnet mit der Literatur überein.

Messverfahren weiter verbessern

„Die Fähigkeit, Temperaturdifferenzen im sub-Millikelvin-Bereich aufzulösen, fasziniert mich sehr und ist ein Schlüssel, um Quantenmaterialien eingehender zu untersuchen“, sagt Erstautor Dr. Danny Kojda. „Wir haben nun gemeinsam ein durchdachtes Experimentdesign, klare Messprotokolle und präzise Analyseverfahren entwickelt, die hochauflösende und reproduzierbare Messungen erlauben“. Abteilungsleiter Klaus Habicht fügt an: „Unsere Arbeit liefert auch Hinweise zur weiteren Verbesserung der Auflösung in zukünftigen Instrumenten, die auf tiefe Probentemperaturen abzielen sollen. Mein Dank geht an alle Beteiligten, insbesondere auch das Team aus der Probenumgebung. Ich hoffe, dass der experimentelle Aufbau fest in die HZB-Infrastruktur integriert wird und die vorgeschlagenen Upgrades umgesetzt werden.“

Ausblick: Topologische Eigenschaften von Phononen

Die Gruppe um Habicht wird nun Messungen des thermischen Hall-Effekts dazu nutzen, um topologische Eigenschaften von Gitterschwingungen in Quantenmaterialien zu untersuchen. „Die mikroskopischen Mechanismen und die Physik der Streuprozesse für den thermischen Hall-Effekt in Ionenkristallen sind bei weitem nicht abschließend verstanden. Die spannende Frage lautet: Warum werden elektrisch neutrale Quasiteilchen in nicht-magnetischen Isolatoren dennoch im Magnetfeld abgelenkt?“, sagt Habicht. Mit dem neuen Instrument hat das Team nun die Voraussetzung geschaffen, um diese Frage aufzuklären.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
    Science Highlight
    21.10.2025
    BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
    Erstmals ist es einem Team an BESSY II gelungen, experimentell eindimensionale elektronische Eigenschaften in einem Material nachzuweisen. Die Proben bestanden aus kurzen Ketten aus Phosphoratomen, die sich auf einem Silbersubstrat selbst organisiert in bestimmten Winkeln bilden. Durch eine raffinierte Auswertung gelang es, die Beiträge von unterschiedlich ausgerichteten Ketten voneinander zu trennen und zu zeigen, dass die elektronischen Eigenschaften tatsächlich einen eindimensionalen Charakter besitzen. Berechnungen zeigten darüber hinaus, dass ein spannender Phasenübergang zu erwarten ist. Während das Material aus einzelnen Ketten halbleitend ist, wäre eine sehr dichte Kettenstruktur metallisch.
  • Ein innerer Kompass für Meereslebewesen im Paläozän
    Science Highlight
    20.10.2025
    Ein innerer Kompass für Meereslebewesen im Paläozän
    Vor Jahrmillionen produzierten einige Meeresorganismen mysteriöse Magnetpartikel von ungewöhnlicher Größe, die heute als Fossilien in Sedimenten zu finden sind. Nun ist es einem internationalen Team gelungen, die magnetischen Domänen auf einem dieser „Riesenmagnetfossilien” mit einer raffinierten Methode an der Diamond-Röntgenquelle zu kartieren. Ihre Analyse zeigt, dass diese Partikel es den Organismen ermöglicht haben könnten, winzige Schwankungen sowohl in der Richtung als auch in der Intensität des Erdmagnetfelds wahrzunehmen. Dadurch konnten sie sich verorten und über den Ozean navigieren. Die neue Methode eignet sich auch, um zu testen, ob bestimmte Eisenoxidpartikel in Marsproben tatsächlich biogenen Ursprungs sind.
  • Was vibrierende Moleküle über die Zellbiologie verraten
    Science Highlight
    16.10.2025
    Was vibrierende Moleküle über die Zellbiologie verraten
    Mit Infrarot-Vibrationsspektroskopie an BESSY II lassen sich hochaufgelöste Karten von Molekülen in lebenden Zellen und Zellorganellen in ihrer natürlichen wässrigen Umgebung erstellen, zeigt eine neue Studie von einem Team aus HZB und Humboldt-Universität zu Berlin. Die Nano-IR-Spektroskopie mit SNOM an der IRIS-Beamline eignet sich, um winzige biologische Proben zu untersuchen und Infrarotbilder der Molekülschwingungen mit Nanometer-Auflösung zu erzeugen. Es ist sogar möglich, 3D-Informationen, also Infrarot-Tomogramme, aufzuzeichnen. Um das Verfahren zu testen, hat das Team Fibroblasten auf einer hochtransparenten SiC-Membran gezüchtet und in vivo untersucht. Die Methode ermöglicht neue Einblicke in die Zellbiologie.